You are here

Bio-Effects of Ultra-High MRI Gradient Slew Rates

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 9R42NS073289-06
Agency Tracking Number: R42NS073289
Amount: $2,597,604.00
Phase: Phase II
Program: STTR
Solicitation Topic Code: NINDS
Solicitation Number: PA10-051
Timeline
Solicitation Year: 2011
Award Year: 2011
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
5611 ROOSEVELT ST
BETHESDA, MD -
United States
DUNS: 809594661
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 STANLEY FRICKE
 (202) 476-6153
 sfricke@cnmc.org
Business Contact
 IRVING MD
Phone: (301) 346-7944
Email: inweinberg@gmail.com
Research Institution
 UNIVERSITY OF MARYLAND
 
UNIVERSITY OF MD BIOTECHNOLOGY INSTITUTE 701 E PRATT STREET, SUITE 200
BALTIMORE, MD 21202-3101
United States

 () -
 Nonprofit College or University
Abstract

DESCRIPTION (provided by applicant): This application represents a competing renewal request for a Phase II STTR project, in which we constructed an ultra-fast gradient system for magnetic resonance imaging. Operation of the novel system is based upon theprinciple that the nervous system is relatively insensitive to very short exposures to changing magnetic fields. As a result, we are showing in clinical trials that magnetic slew rates (i.e., changes in gradients per time) can be 1,000 times faster than are currently available in clinical MRI scanners, and deliver magnetic gradients 10 times higher, without painful stimulation. The purpose of this competing renewal is to take the technology to the level of FDA approval. Based on well-established principlesof MRI physics, it stands to reason that the increased gradient strength and shorter pulse sequences permitted by the new technology will have multiple meaningful benefits to users of clinical and research systems, including overall decreased acquisition time, reduction in acoustic noise, and elimination of artifacts due to subject motion. The multidisciplinary team assembled for this project includes MRI physicists, pediatric and general radiologists, and neuroscientists, experts in pulsed power technology, medical capital equipment entrepreneurs, and committed technical representatives of potential strategic partners active in this field. The team has worked well together over the past five years to achieve significant achievements, and has collaborated inthe past to launch four medical products with the aid of the NIH SBIR program. Milestones to be accomplished in this project include adaptation of the system to a 7-Tesla animal MRI scanner and a clinical 3-Tesla system, visualization of post-mortem humantissues and moving vertebrate animals, FDA-mandated human trials of nervous stimulation and acoustic noise, and high- resolution tractography and functional MRI of the human brain in vivo. From a commercial point of view, configuring the product as a replacement upgrade to existing MRI systems has been a very successful financial strategy for several companies, one of which has committed to assisting us in this effort. Potential benefits to the country include health-care cost reduction (as a result of reduced scan-times per patient), increased scientific knowledge and diagnostic confidence as we examine smaller features of the nervous system, export potential of advanced medical products, and improved patient comfort (as we reduce acoustic noise and the need for sedation of pediatric and adult subjects). PUBLIC HEALTH RELEVANCE: Potential benefits to the country include health-care cost reduction (as a result of reduced scan- times per patient), increased scientific knowledge and diagnostic confidence as we examine smaller features of the nervous system, export potential of advanced medical products, and improved patient comfort (as we reduce acoustic noise and the need for sedation of pediatric and adult subjects).

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government