USA flag logo/image

An Official Website of the United States Government

Innovative Subgrid-Scale Combustion Modeling for Gas Turbines

Award Information

Agency:
Department of Energy
Branch:
N/A
Award ID:
Program Year/Program:
2011 / SBIR
Agency Tracking Number:
95171
Solicitation Year:
2011
Solicitation Topic Code:
39 a
Solicitation Number:
DE-FOA-0000508
Small Business Information
Combustion Research and Flow Technology, Inc.
6210 Kellers Church Road Pipersville, PA -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 2
Fiscal Year: 2011
Title: Innovative Subgrid-Scale Combustion Modeling for Gas Turbines
Agency: DOE
Contract: DE-FG02-10ER85739
Award Amount: $1,000,000.00
 

Abstract:

New high-efficiency, low-emission, fuel-flexible gas turbine designs will operate at fuel lean conditions near the flame blow-out limit. To maintain high efficiency and flame stability under these conditions, a detailed knowledge of the flame dynamics will be required from both experimental and computational studies. From a computational perspective, accurate turbulent combustion models are required to evaluate advanced turbine designs. However, current combustion models applied for design analysis lack the necessary physical modeling to accurately predict flows near the lean blow-out limit. Under this proposed effort a new and innovative modeling strategy will be developed to accurately predict flows near the lean blow-out limit. This new model will also be computationally inexpensive so that it may be applied routinely within design analysis. The objective of this program is to develop a fast running, turbulent combustion model for large eddy simulation (LES) that will be accurate for all flame regimes of gas turbine operation, including near the lean blow-out limit. This new formulation will be based on a parameterization of the linear-eddy model (LEM). The LEM is a comprehensive mixing model that accurately captures the interaction of flow turbulence with flame structure in all flame regimes. Statistics from this model will be parameterized in terms of a reduced set of variables and stored within a database that is used to produce the required closure statistics for an LES prediction. This model will be fast because the closure statistics are retrieved from a database and not computed during the simulation. The model will also be general and applicable to all flame regimes because the closure statistics will be produced from the LEM formulation. Under Phase I a unique and innovative application of the LEM was developed that directly predicts flame extinction limits that contribute to lean blow-out. With this new formulation, an efficient LES sugrid model was developed and validated for an initial gas turbine combustor experiment. Under Phase II the modeling formulation will be fully validated for a range of test cases relevant to gas turbine combustion, including lean blow-out prediction. A commercial software package will also be developed to generate user defined functions of the model for use in any commercial flow solver. Commercial Application and Other Benefits: A software tool kit developed under this effort will produce the model statistics and database required for an LES prediction. The database for a particular problem may be used within any LES flow solver, and for steady-state flow solvers as well. Combustion models generated by the tool kit will be applicable to a wide range of military and commercial combustion applications including gas turbines, power generation systems, furnaces, incinerators, internal combustion engines, aircraft engines, etc. CRAFT Tech will market this tool kit for license to commercial customers as well as to other flow solver development companies.

Principal Investigator:

William Calhoon
Dr.
2157661520
calhoon@craft-tech.com

Business Contact:

Paula Schachter
Dr.
2157661520
schachte@craft-tech.com
Small Business Information at Submission:

Combustion Research And Flow Technology, Inc.
6210 Kellers Church Road Pipersville, PA 18947-2010

EIN/Tax ID: 232759059
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No