USA flag logo/image

An Official Website of the United States Government

Feasibility of Long Wavelength Infrared Focal Plane Arrays Based on Type-II…

Award Information

Agency:
Department of Defense
Branch:
N/A
Award ID:
Program Year/Program:
2011 / SBIR
Agency Tracking Number:
B103-009-0132
Solicitation Year:
2010
Solicitation Topic Code:
MDA10-009
Solicitation Number:
2010.3
Small Business Information
MP Technologies, LLC
1500 Sheridan RD, SUITE 8A Wilmette, IL -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2011
Title: Feasibility of Long Wavelength Infrared Focal Plane Arrays Based on Type-II Superlattice Minority Electron Unipolar Architecture
Agency: DOD
Contract: HQ0147-11-C-7568
Award Amount: $99,922.00
 

Abstract:

Recent development of Antimonide-based Type-II superlattice infrared detectors has resulted in significant breakthroughs in terms of device performance as well as FPA imaging quality. Improvement in material quality and processing technique, as well as evolutionary modifications in device architecture have demonstrated the advantages of the material system over alternatives, and proven it as a viable candidate for the next generation infrared imaging. Yet, the performance of this material system has not reached its limits. In this project, we propose to further build upon the gap-engineering capability of Type-II superlattices to develop novel quantum device architecture called Minority Electron Unipolar Photodetector (MEUP). The design is a hybrid between conventional photoconductive and photovoltaic detectors and can benefit from the advantages of both configurations. The novel device architecture is expected to achieve high quantum efficiency while decreasing the dark current and the associated shot-noise. Material growth will be realized on 3"GaSb substrates and optimized for highest quality and excellent uniformity across the wafer. Applying it to LWIR FPAs in Phase II, it is expected to achieve a quantum efficiency above 60% and a dark current density below 1 uA/cm2 at operating temperatures higher than 65 K.

Principal Investigator:

Ryan McClintock
Technical Director
(847) 491-7208
rmcclin@gmail.com

Business Contact:

Manijeh Razeghi
President
(847) 491-7208
razeghi@eecs.northwestern.edu
Small Business Information at Submission:

MP Technologies, LLC
1801 Maple Avenue Evanston, IL -

EIN/Tax ID: 364280738
DUNS: N/A
Number of Employees:
Woman-Owned: Yes
Minority-Owned: No
HUBZone-Owned: No