USA flag logo/image

An Official Website of the United States Government

Nonlinear Dielectric Materials and Processing for High-Energy-Density Capacitors

Award Information

Agency:
Department of Defense
Branch:
N/A
Award ID:
Program Year/Program:
2011 / SBIR
Agency Tracking Number:
F103-158-2340
Solicitation Year:
2010
Solicitation Topic Code:
AF103-158
Solicitation Number:
2010.3
Small Business Information
Strategic Polymer Sciences, Inc.
200 INNOVATION BLVD, STE 237 STATE COLLEGE, PA -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2011
Title: Nonlinear Dielectric Materials and Processing for High-Energy-Density Capacitors
Agency: DOD
Contract: FA8650-11-M-5123
Award Amount: $100,000.00
 

Abstract:

We propose to develop polymer capacitor film with antiferroelectric behavior by combining a high dielectric constant polymer with antiferroelectric ceramic particles. Special processing techniques will be developed to achieve 3-D structure to enhance the dielectric performance and the dielectric breakdown strength. The novel nonlinear polymer nanodielectric materials will show a significantly higher dielectric constant at and above the critical switching electric field, which may lead to dramatically improved energy density as observed in ceramic antiferroelectric materials. The high risk of this unconventional approach is well justified by the potential superior performance of the antiferroelectric film capacitor technology. Similar to polypropylene capacitors, the novel capacitor will also have graceful failure feature and can be produced into large size capacitor bank that stores mega joules energy. The advanced hybrid capacitor film will have energy density above 4 J/cc and dissipation factor lower than 1%, lifetime above 100,000 charge-discharge cycles at 100 pps repetition rate. BENEFIT: There are numerous applications that will benefit from the antiferroelectric film capacitors with high energy density, low dielectric loss, and graceful failure characteristic. These capacitors can be used in the powder system conditioning electronics in the all electric structures developed by the Navy and the Air Force, DC link capacitors for next generation hybrid or plug-in electric vehicles, power electronics in down hole oil/gas exploration, pulse-forming networks (PFNs) for the conversion of prime electrical energy into the necessary short pulses of energy needed to energize loads such as high power microwave, directed energy, kinetic energy weapons, and high power microwave. The Army is developing future vehicles which require compact electrical power systems. The Navy is developing the all-electric ship in which the power requirements of future Naval vessels will not be as dominated by propulsion as current ships and it may be desirable to be able to transfer energy between uses. The Air Force is developing all-electric aircrafts. This will require storage and conditioning of vast amounts of power. Compact, high-energy-density, pulse-power capacitors will be the enabling technology for all future weapon systems that the DoD plans to pursue. In addition, these advanced capacitor film can also be used for implantable cardiac defibrillators, external defibrillators, and capacitor bank for hybrid electric vehicles.

Principal Investigator:

Shihai Zhang
Director of Engineering
(814) 238-7400
szhang@strategicpolymers.com

Business Contact:

Mary L. Carns
Contract Specialist
(814) 238-7400
mcarns@strategicpolymers.com
Small Business Information at Submission:

Strategic Polymer Sciences, Inc.
200 Innovation Blvd. Suite 237 State College, PA -

EIN/Tax ID: 204375505
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No