USA flag logo/image

An Official Website of the United States Government

High Performance Electric-Field Sensor Based on Enhanced Electro-Optic Polymer…

Award Information

Agency:
Department of Defense
Branch:
Air Force
Award ID:
Program Year/Program:
2012 / STTR
Agency Tracking Number:
F11B-T01-0118
Solicitation Year:
2011
Solicitation Topic Code:
AF11-BT01
Solicitation Number:
2011.B
Small Business Information
Omega Optics, Inc.
10306 Sausalito Dr Austin, TX 78759-6113
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2012
Title: High Performance Electric-Field Sensor Based on Enhanced Electro-Optic Polymer Refilled Slot Photonic Crystal Waveguides
Agency / Branch: DOD / USAF
Contract: FA8650-12-M-5131
Award Amount: $99,995.00
 

Abstract:

ABSTRACT: In this program, we propose to develop a miniaturized Electromagnetic (EM) wave sensor based on defect engineered slotted photonic crystal waveguide (PCW) Mach Zehnder interferometer (MZI). EO polymers with large EO coefficient (r33>150pm/V) will be designed and synthesized to refill the slot PCW in order to take advantage of high field concentration in the narrow slots. Band engineered slot PCW slows down the light propagation, and thus increases the light-EO polymer intraction over its optical bandwidth, while maintaining a constant group index of ~22 (low dispersion). Low dispersion propagation and inverted domain poling for EO polymer are adopted to enhance the linearity of sensor operation, and thus its dynamic range (1V/m-1000kV/m) with an RF band coverage from 1 MHz to 40 GHz. Input/ouput PCW couplers consisting of optical mode convertor and adiabatic group index tapers will be used to minimize the device optical insertion loss. The slot dimensions and poling electrodes are designed for maximum poling efficiency. This device will benefit from three enhancement mechanisms: 1. large EO coefficient from polymer (>~150pm/V), 2. slow light effect (10X to 100X enhancement) and 3. high concentration of photon energy in the slot region (50X enhancement). This unique combination, can provide an integrated hybrid silicon-EO polymer based modulator/sensor chip with an in-device effective r33 of>75000pm/V (150pm/V*10*50) for different RF photonics applications requiring low power, linearized high speed operation. EO polymer synthesis techniques for potential mass-production will pave a smooth transition to increase the RF performance while reducing the cost of future dual-use RF photonic systems. BENEFIT: Electromagnetic (EM) wave measurements are required in various scientific and technical areas, including process control, EM-field monitoring in medical apparatuses, ballistic control, electromagnetic compatibility measurements, microwave integrated circuit testing, and detection of directional energy weapon attack. Conventional EM wave measurement systems use active metallic probes (small anteneas), which disturb the EM waves to be measured and render the sensor very sensitive to electromagnetic noises. Photonic EM-field sensors exhibit significant advantages with respect to the electronic ones due to their smaller size, lighter weight, higher sensitivity, and extremely broad bandwidth. However, photonic EM-field sensors using Mach-Zehnder Interferometer (MZI) or ring resonators are facing significant challenges in their spurious free dynamic range (SFDR) for high fidelity measurement of the EM waves (typical 70% linearity with conventional MZIs). The proposed MZI based EM sensor is the most compact-size (less than 2mm total device length) that provides large dynamic range (1V/m-10MV/m) and linearity (over 90%) and has the potential for use in wide range of defense and civilian applications.

Principal Investigator:

Amir Hosseini
Research Scientist
(512) 996-8833
amir.hosseini@omegaoptics.com

Business Contact:

Gloria Chen
Contracts Manager
(512) 996-8833
gloria.chen@omegaoptics.com
Small Business Information at Submission:

Omega Optics, Inc.
8500 Shoal Creek Blvd, Bldg4, Suite 200 Austin, TX 78757

EIN/Tax ID: 743016162
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Research Institution Information:
UT Austin and U. of Washington
10100 Burnet Rd, PRC/MER 160,
austin, TX 78758-
Contact: Ray T. Chen and A. Y. Jen
Contact Phone: (512) 471-7035