You are here

Eulerian Transported PDF Framework for Scramjet Flowpath Analysis

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNX12CF18P
Agency Tracking Number: 114217
Amount: $124,935.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: A2.02
Solicitation Number: N/A
Timeline
Solicitation Year: 2011
Award Year: 2012
Award Start Date (Proposal Award Date): 2012-02-13
Award End Date (Contract End Date): 2012-08-13
Small Business Information
AL
Huntsville, AL 35805-1944
United States
DUNS: 185169620
HUBZone Owned: No
Woman Owned: Yes
Socially and Economically Disadvantaged: No
Principal Investigator
 Ranjan Metha
 Principal Investigator
 (256) 726-4964
 proposals-contracts@cfdrc.com
Business Contact
 Silvia Harvey
Title: Business Official
Phone: (256) 726-4858
Email: sxh@cfdrc.com
Research Institution
 Stub
Abstract

Scramjet engines promise to become a next-generation revolutionary technology for aerospace applications. Some of the significant challenges in rapid development of scramjets include complex flow physics; combustion; flow-combustion interactions; propulsion air-frame integration; coupled with difficulty in producing realistic experimental conditions. The role of Computational Fluid Dynamics (CFD), therefore, is crucial in design and development of the scramjet engines. The overall innovation includes development of a comprehensive Eulerian transported PDF methods framework coupled with an efficient RANS/LES flow solvers for simulating high-speed turbulent reacting flows and an innovative chemistry acceleration module achieving up to two orders of magnitude reduction in computing times for the Eulerian TPDF framework. In Phase I feasibility of the proposed Eulerian transported PDF approaches for accurately capturing turbulence-chemistry interactions will be demonstrated and analyzed. In Phase II, we will perform additional developments in the chemistry acceleration module and the Eulerian TPDF framework, such that a comprehensive, turbulent-combustion modeling framework, for low and high-Mach number reacting flows will be available at the end of Phase II.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government