USA flag logo/image

An Official Website of the United States Government

In vitro Reconstitution of Protein Translation of Thermus Thermophilus for…

Award Information

Department of Health and Human Services
Award ID:
Program Year/Program:
2012 / SBIR
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
240 County Road IPSWICH, MA 01938-2723
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Phase 2
Fiscal Year: 2012
Title: In vitro Reconstitution of Protein Translation of Thermus Thermophilus for Direct
Agency: HHS
Contract: 2R44GM086930-02
Award Amount: $960,499.00


DESCRIPTION (provided by applicant): Directed protein evolution is a powerful technology for protein engineering. It generally involves generating a library of protein variants and identifying those with desired properties by selection or screening. In terms of library complexity, in vitro selection methods are superior to cell-based selection methods by several orders of magnitude, allowing a much larger sequence space in proteins to be sampled. There is currently no effective in vitro method to select proteins with desired mutations that enhance their thermostability. Thermostable proteins can function at high temperatures, are generally robust and resistant to degradation under a variety of conditions, and therefore are valuable for a wide range of industrial and medical applications. This project intends to develop a technology for in vitro selection of protein thermostability. We plan to achieve this goal by (1) constructing a reconstituted in vitro protein synthesis system (thermo PURE system) using purified components from Thermus thermophilus, a bacterium that grows at an optimal temperature of 720C, and (2) applying such system for directed evolution of proteins with enhanced thermostability. We have successfully completed the first phase of the project (Phase I) and established an initial thermo PURE system that allowed in vitro synthesis of active full- length proteins at temperatures up to 600C. For the Phase II, we propose to commercialize the thermo PURE system by optimizing the system and testing more target proteins. We also propose to use the thermo PURE system in conjunction with in vitro selection technologies, such as in vitro compartmentalization and ribosome display, for directed evolution of thermostable proteins from their mesophilic origins. We plan to test several selection schemes of directed evolution for a variety of enzymes and proteins. If successful, this project would lead to the following unique and valuable commercial products: (1) a protein thermo synthesis kit; (2) a servicefor engineering proteins with enhanced thermostability; (3) thermostable nucleic acid enzymes as new reagents for research communities and thermostable single-chain antibodies for therapeutic applications. PUBLIC HEALTH RELEVANCE: Proteins can be engineered to function at high temperatures and exhibit robustness and resistance to degradation under a variety of conditions. This project intends to develop a technology to select engineered thermostable proteins for industrial and medical use.

Principal Investigator:

Shaorong Chong

Business Contact:

Brian Tinger
Small Business Information at Submission:

240 County Road Ipswich, MA -

EIN/Tax ID: 104263196
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No