USA flag logo/image

An Official Website of the United States Government

SBIR Phase I: Development of a Selectively Reinforced Aluminum Composite Brake…

Award Information

Agency:
National Science Foundation
Branch:
N/A
Award ID:
Program Year/Program:
2012 / SBIR
Agency Tracking Number:
1142640
Solicitation Year:
2012
Solicitation Topic Code:
NM
Solicitation Number:
Small Business Information
REL, Inc.
57640 North Eleventh Street Calumet, MI 49913-3118
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: Yes
 
Phase 1
Fiscal Year: 2012
Title: SBIR Phase I: Development of a Selectively Reinforced Aluminum Composite Brake Rotor
Agency: NSF
Contract: 1142640
Award Amount: $149,856.00
 

Abstract:

This Small Business Innovation Research Phase I project is focused on developing a one-piece functionally graded hybrid (fiber/particle) reinforced aluminum alloy matrix automobile brake rotor. Composite brake rotors have substantial weight savings potential, but costs and performance have limited their adoption. In this project we will explore the concept of a one-piece, hybrid reinforced rotor. The new rotor will have significantly better properties and lifespan compared to conventional materials due to the functional reinforcement gradient (FRG) across the braking surface and the tailored macro-interfaces. While the project will benefit from our experience with FRG motorcycle brake rotors, the proposed work is not a direct extension because of unique challenges associated with it. A brake rotor has three functional zones: a) friction interface (heating zone), b) venting (cooling zone) and c) mounting hub (torque transfer zone). Each of these zones must have specific material attributes for the rotor to function properly. The development of the FRG transition interfaces between these zones is the focus of the Phase I effort. This work will address challenges related to the development of the squeeze casting process, die and preform design, and the control of the microstructure and properties of the aforementioned zones and interfaces. The broader impact/commercial potential of this project includes weight savings in automobiles, increased fuel efficiency, and reduced emissions. This technology will also help in reducing weight in military vehicles, which will increase their loading capacity, reduce fuel consumption, and increase mission lengths. It is also expected that the longer life of the proposed brake rotors will reduce the related maintenance requirements. The company has partnered with the Polytechnic Institute of New York University, which will allow students to gain hands-on training. This functionally-graded one piece rotor will be a first-of-its-kind product in this market segment, which is expected to create a strong competitive position for our team. The deployment of this technology may also help to spur the development of other lightweight automobile components. Finally, successful development of this product, and the subsequent commercial transition in Phase II will result in the creation of high-paying jobs in the domestic economy.

Principal Investigator:

Josh Loukus
9063373018
josh@relinc.net

Business Contact:

Josh Loukus
9063373018
josh@relinc.net
Small Business Information at Submission:

REL, Inc.
57640 North Eleventh Street Calumet, MI 49913-3118

EIN/Tax ID: 208168250
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: Yes