USA flag logo/image

An Official Website of the United States Government

Statistical Methods for Incomplete Data with Measurement Errors

Award Information

Agency:
Department of Health and Human Services
Branch:
N/A
Award ID:
Program Year/Program:
2012 / SBIR
Agency Tracking Number:
R43GM100573
Solicitation Year:
2012
Solicitation Topic Code:
NIGMS
Solicitation Number:
PA11-096
Small Business Information
DATA NUMERICA INSTITUTE, INC.
6120 149TH AVE SE BELLEVUE, WA 98006-4620
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: Yes
 
Phase 1
Fiscal Year: 2012
Title: Statistical Methods for Incomplete Data with Measurement Errors
Agency: HHS
Contract: 1R43GM100573-01
Award Amount: $198,601.00
 

Abstract:

DESCRIPTION (provided by applicant): Missing data and measurement errors are common problems in statistical data analysis. We are interested in experimental and observational studies where there exist missing data and measurement errors problems. Examplesinclude health surveys containing non-responders or missing items, surrogate marker data with measurement errors, etc. The applications could be longitudinal clinical trials, multilevel community studies and health surveys. The incomplete data could be thenon-ignorable missing response used in a model or as predictors, i.e. missing response, missing covariate, and covariate measurement errors. The most complicated scenario is the combination of such difficulties, i.e. the missing response with covariate measurement errors. The results from this project include innovative statistical methods, case studies, tools, solutions, and publications. These resources will be incorporated in our Longit Informatics Center for sharing and illustration. The Longit Informatics Center is an online data analysis environment. Subscribers can access many statistical packages and dynamic graphics for data analysis. In this project, the ultimate results will be two statistical packages added to Longit: 1) MiMe: statistical methods for missing data and measurement errors, and 2) Laso: joint modeling methods for longitudinal and survival outcomes in the study of surrogate marker for clinical event time. These packages include innovative statistical methods, sensitivity analysis andgraphical methods. There is no commercial software to deal with complicated case as Laso. PUBLIC HEALTH RELEVANCE: This project aims to develop statistical methods and tools for analyzing incomplete data with missing data and measurement errors.

Principal Investigator:

Edward C. Chao
425-591-7944
echao@datanumerica.com

Business Contact:

Katherine Wang
425-802-9627
kwang@datanumerica.com
Small Business Information at Submission:

DATA NUMERICA INSTITUTE, INC.
6120 149TH AVE SE BELLEVUE, WA 98006-4620

EIN/Tax ID: 191206141
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No