You are here

Adhesion Signature-Based, Label-Free Isolation of Pluripotent Stem Cell Derived N

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R43NS080407-01
Agency Tracking Number: R43NS080407
Amount: $706,226.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: NINDS
Solicitation Number: PA11-134
Timeline
Solicitation Year: 2012
Award Year: 2012
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
RHODES CENTER, UGA
ATHENS, GA -
United States
DUNS: 170950476
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 JAMIE CHILTON
 (706) 542-9191
 jchilton@arunabiomedical.com
Business Contact
 MICHELE ROSS
Phone: (706) 542-9191
Email: mross@arunabiomedical.com
Research Institution
 Stub
Abstract

DESCRIPTION (provided by applicant): Currently, up to one billion people worldwide suffer from disabling neurodegenerative disorders, including traumatic injuries, stroke and diseases of the CNS such as Alzheimer's and Parkinson's disease (PD). As the number of afflicted individuals substantially grows, it is imperative that more sophisticated, biologically relevant cellular model systems are developed to improve diagnostic tools, better understand mechanisms of disease pathology and more rapidly screen forneurological drug therapy targets. Human induced pluripotent stem cells (hiPSC) derived from patient populations are a compelling and unique cell source to develop human model systems, with their established capacity for self-renewal and ability to differentiate into specialized neural cell types of interet. The full potential of hiPSC will not be realized, however, until an adequate commercial source can provide neurobiologists and pharmaceutical companies with sufficient quantities of consistent hiPSC- derived neural cell types suitable for cell-based assays. Currently, lengthy and laborious derivation processes hinder the large-scale production of uniform and reliable hiPSC and hiPSC-derived neural cell populations. Thus, the goal of this project is to establish the feasibility of using a novel microfluidic-based approach to efficiently isolate different cell populations based on their distinct 'adhesive signature' via controllable fluid forces. This label-free and non-enzymatic method is faster, simplerand higher throughput than current cell separation techniques. Using this microfluidic device system, cell isolation with greater than 95% purity was obtained for 1) hiPSC from their originating parent cells; 2) undifferentiated hiPSC and human embryonic stem cells (hESC) from differentiating cells; and 3) hESC and hiPSC from feeder cells. Preliminary data also demonstrates that hESC- and hiPSC-derived neural cell types show distinct 'adhesive signatures' that are compatible for label-free microfluidic cellisolation and enrichment. If effective across multiple hiPSC lines (both healthy and diseased) and multiple derivations of neural cell types, this novel adhesion-based, label-free microfluidic system will shorten and streamline the scaled-up production ofenriched populations of hiPSC- derived neural rosettes, neural progenitor cells and mature neuronal cell types (e.g. dopaminergic neurons) for direct use in cell-based assays. This project will lead to a Phase II proposal where resulting products includemultiple turn-key kits of label-free neural cell isolation devices, hiPSC-derived healthy and disease-specific neural cell lines (including Parkinson's disease) and accompanying media, along with custom services for generating hiPSC and direct somatic cell transdifferentiated neural cell lines. Ultimately, we hope to advance a new generation of unique patho-physiologically relevant cell-based assays to hasten the progression of high- throughput screening (HTS), increase the validation and efficacy of therapeutic drug targets, and potentially facilitate the development of safer, more effective treatments of neurodegenerative disorders. PUBLIC HEALTH RELEVANCE: Human induced pluripotent stem cells (hiPSC) derived from patient populations are a compelling and unique cell source to develop predictive and translational in vitro human cellular model systems. We will develop a novel microfluidic-based approach to efficiently isolate different cell populations based on their distinct 'adhesive signature' via controllable fluid forces. This label-free, non-enzymatic methodology will be used to effectively streamline the high throughput production of healthy and Parkinson's patient hiPSC-derived neural cell types for their use in neurodegenerative pathophysiology, drug discovery, safety and toxicant projects.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government