USA flag logo/image

An Official Website of the United States Government

VCSEL technology for ultrahigh speed OCT retinal and anterior eye imaging

Award Information

Agency:
Department of Health and Human Services
Branch:
N/A
Award ID:
Program Year/Program:
2012 / SBIR
Agency Tracking Number:
R44EY022864
Solicitation Year:
2012
Solicitation Topic Code:
NEI
Solicitation Number:
PA11-096
Small Business Information
PRAEVIUM RESEARCH, INC.
5266 HOLLISTER AVE, STE 224 SANTA BARBARA, CA -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2012
Title: VCSEL technology for ultrahigh speed OCT retinal and anterior eye imaging
Agency: HHS
Contract: 1R44EY022864-01
Award Amount: $999,932.00
 

Abstract:

DESCRIPTION (provided by applicant): The ultimate goal of this program is to enable a new generation of high performance, low cost ophthalmic Optical Coherence Tomography OCT technology based on new MEMS-tunable vertical cavity surface-emitting laser (MEMS-VCSEL) swept light sources. This will be accomplished by developing, validating, and commercializing VCSEL technology for swept source OCT (SS-OCT) at 850nm and 1050nm wavelengths used for ophthalmic imaging. This work builds upon strong preliminary datausing optically pumped VCSELs for OCT at both 1310nm and 1050nm obtained by Praevium Research and collaborators at the Massachusetts Institute of Technology (MIT). This prior work has demonstrated numerous performance advantages of VCSELs for SS-OCT imaging. The unique features of VCSELs enable fundamental axial scan rates up to 1MHz, 20-40x faster than current commercial spectral domain OCT (SD-OCT) ophthalmic systems, adjustable sweep rates enabling high speed and long imaging range operating regimes, with imaging ranges gt10x more than commercial SD-OCT ophthalmic systems. These advantages promise to enable a cost-effective, multi-modal OCT instrument capable of retinal, anterior eye and axial eye length imaging. This new generation of ophthalmic technology will enable wide field 3D-OCT retinal imaging for assessing retinal pathology, imaging the anterior eye for improved refractive power measurement, and axial eye length imaging for improved intraocular lens (IOL) implant assessment. The unique performance features of VCSELs will also facilitate functional imaging such as Doppler and polarization-sensitive OCT (PS-OCT). The proposed program will build upon results from optically pumped, amplified 1310nm VCSELs from Praevium Research under a previous NIH-funded effort on VCSELs for OCT cancer imaging, to develop new electrically pumped, high power VCSELs at 850nm and 1050nm for ophthalmic imaging. These advances are made feasible by lower power requirements for ophthalmic OCT and mature Gallium Arsenide materials. A pure electrically pumped VCSEL technology would represent the first monolithic wafer-scale laser source for SS-OCT, significantly reducing the cost of laser sources and OCT systems. This would in turn enable penetration of ophthalmic OCT into newmarkets and clinical settings. These broad goals will be realized by addressing laser development, OCT system development, and clinical system validation. VCSEL performance will be increased by incorporating advanced designs and processing methods, with each generation of VCSELs integrated into ongoing clinical studies with collaborators in retinal, whole eye, and anterior eye imaging. PUBLIC HEALTH RELEVANCE: This effort is expected to impact public health by creating a new high performance, low-cost generation of ophthalmic technology based on Optical Coherence Tomography (OCT) using new tunable vertical cavity surface-emitting lasers (VCSELs). This new technology will enable wide field 3-dimensional retinal imaging for assessing retinal pathology, imaging the anterior eye for improved refractive power measurement, axial eye length imaging for improved intraocular lens (IOL) implant assessment, and new modes of functional eye imaging. Reduced system cost will promote expansion of these capabilities into a broader range of clinical settings.

Principal Investigator:

Vijaysekhar Jayaraman
805-448-4008
vijay@praevium.com

Business Contact:

Vijaysekhar Jayaraman
805-448-4008
vijay@praevium.com
Small Business Information at Submission:

PRAEVIUM RESEARCH, INC.
5266 HOLLISTER AVE, STE 224 SANTA BARBARA, CA -

EIN/Tax ID: 177058560
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No