USA flag logo/image

An Official Website of the United States Government

Radiation-Hardened Memristor-based Memory for Extreme Environments

Award Information

Agency:
National Aeronautics and Space Administration
Branch:
N/A
Award ID:
Program Year/Program:
2013 / SBIR
Agency Tracking Number:
124263
Solicitation Year:
2012
Solicitation Topic Code:
H6.02
Solicitation Number:
Small Business Information
CFD RESEARCH CORPORATION
215 WYNN DR, 5TH FL HUNTSVILLE, AL -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2013
Title: Radiation-Hardened Memristor-based Memory for Extreme Environments
Agency: NASA
Contract: NNX13CM16P
Award Amount: $124,888.00
 

Abstract:

NASA space exploration missions require radiation-hardened memory technologies that can survive and operate over a wide temperature range. Memristors (memory-resistors) are a promising technology for the next generation of non-volatile memory (NVM) applications and offer a highly-desirable combination of density, access speed, and power. Early investigations have also shown that memristors have high radiation hardness. In this SBIR, CFDRC and Arizona State University propose to develop, characterize, and demonstrate novel, memristor-based, radiation-hardened NVM for NASA space applications. In Phase I we will: 1) Fabricate state-of-the-art Chalcogenide Glass (ChG) memristors based on the CBRAM technology; 2) Examine their wide temperature performance (-230 to +130 deg.C) via thermal experiments; and 3) Add new models to CFDRC's NanoTCAD Mixed-Mode simulator for accurate physics-based simulation of memristors. The Phase I effort will evaluate suitability of ChG memristors for extreme temperature applications. In Phase II, we will extend our scope to include wide-temperature investigation of the competing transition-metal-oxide (TMO, e.g., TiO2) memristor technology. For both ChG and TMO, we will then perform irradiation testing and down-select the technology with the best extreme environment (radiation + temperature) performance. Subsequently, we will generate wide-temperature, radiation-enabled, device physics and compact models for the memristors, develop designs for memristor-based NVM, and perform mixed-mode simulations to determine their radiation and thermal response. These results, and physics-based understanding of device response, will be used to develop an NVM prototype that will be tested and demonstrated for NASA space applications.

Principal Investigator:

Ashok Raman
Principal Investigator
2567264800
ar2@cfdrc.com

Business Contact:

Silvia Harvey
Business Official
2567264858
sxh@cfdrc.com
Small Business Information at Submission:

CFD Research Corporation
215 Wynn Drive, 5th Floor Huntsville, AL 35805-1944

EIN/Tax ID: 630944385
DUNS: N/A
Number of Employees:
Woman-Owned: Yes
Minority-Owned: No
HUBZone-Owned: No