USA flag logo/image

An Official Website of the United States Government

Gas Phase Synthesis and Implantation of Metastable Intermolecular Compounds…

Award Information

Department of Defense
Air Force
Award ID:
Program Year/Program:
2014 / SBIR
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
3401 Louisiana St., Suite 355 HOUSTON, TX 77002-9551
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Phase 1
Fiscal Year: 2014
Title: Gas Phase Synthesis and Implantation of Metastable Intermolecular Compounds (MICs)
Agency / Branch: DOD / USAF
Contract: FA8651-13-M-0182
Award Amount: $149,912.00


ABSTRACT: Core-shell Metastable Intermolecular Compounds (CS-MICs) will be examined utilizing gas-phase nanocluster production, formed into an atomic beam, accelerated and implanted into polymers of interest for air stability studies as well as preliminary exothermic properties. This will include depth profiling via ESCA, XPS, determination of chemistry state at depth, coupled with long term studies at controlled humidity environments followed by ESCA, XPS. SEM-EDS of individual particles will also be undertaken to compare to the average XPS profiles. Surface passivation chemistries will be examined with regard to the coating chemistry, implantation depth, and polymer composition, and from this, air stability factors for a given condition can be provided which is of great use at a chemical level considering the exothermic properties of nanothermite. The goal of this Phase I is to provide well controlled production routes for Core-Shell MICs along with implanted substrates for further energetic studies and plans for scale-up productions can be designed. BENEFIT: Providing a route to air-stable core-shell metastable intermolecular compounds as well as the corresponding energetic studies has the potential to open up several new avenues for commercial success including but not limited to sales of core-shell cluster beamlines, R & D services for customers with specific chemistry desires, and delivery of processes which generate scaled up amounts of core-shell thermites at a level applicable to use within the propulsion and energy delivery needs of the military. Furthermore, the use within microdevices at small scales is also an avenue for a successful core-shell chemistry immediately as the current coating levels may provide a means for initial microdevice tests. Our current work has focused upon the control of the chemistry of the nanoparticle, and implanting this into the sample of interest. The analysis and demonstration of nanothermites implanted below the surface of a polymer, resulting in passivation of the bare-metal or layered surface, and creation of a long-duration air stable thermite would be directly applicable to the field of directed energy and would be an immediately desired product.

Principal Investigator:

Ernest Lewis
Sr. Research Scientist
(713) 522-9880

Business Contact:

Sue Egan
Business coordinato
(713) 522-9880
Small Business Information at Submission:

Ionwerks, Inc.
3401 Louisiana, Ste 355 Houston, TX -

EIN/Tax ID: 760589694
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No