USA flag logo/image

An Official Website of the United States Government

Throughmask ElectroEtching for Cost-Effective Nitinol Stent Fabrication

Award Information

Department of Health and Human Services
Award ID:
Program Year/Program:
2010 / SBIR
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
Faraday Technology, Inc.
315 Huls Drive Clayton, OH 45315-
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Phase 1
Fiscal Year: 2010
Title: Throughmask ElectroEtching for Cost-Effective Nitinol Stent Fabrication
Agency: HHS
Contract: 1R43HL095216-01A1
Award Amount: $100,000.00


DESCRIPTION (provided by applicant): Description Faraday Technology, Inc. proposes to develop the Faradayic ElectroEtching Process, based on pulsed electrolytic through-mask etching of nitinol stents, for rapid stent fabrication while maintaining pattern fidelity in a neutral, aqueous, non-toxic electrolyte. This process will enable stent manufacturing while minimizing process control difficulties and high reject rates associated with conventional laser cutting and electropolishing of nitinol stents. Compa red to conventional laser cutting practices, the Faradayic ElectroEtching Process will not impart thermal damage to the stent, eliminating the need for descaling of undesired oxides. It is believed that the Faradayic Process will be able to cut a stent i n less than two minutes, independent of the pattern complexity. The specific aims of the Phase I effort are to demonstrate the feasibility of this innovative pulsed electrolytic through-mask etching process for cost- effective fabrication of nitinol stents , with etch rates of gt25 lt m/min for stents with a minimum strut width of 50 lt m and slot width of 37.5 lt m. The measures of merit for the Phase I project will be: 1) dimensional tolerance, 2) etch rate, and 3) surface finish. Faraday will be assisted by Dr. Lyle Zardiackas of the University of Mississippi Medical Center. The proposed project meets the NIH mission by developing an innovative stent manufacturing process with the overall aim of addressing technological innovation in the U.S. manufacturing economy consistent with Executive Order Encouraging Innovation in Manufacturing . This technology will enable a rapid, high yield, cost-effective manufacturing process for nitinol stents, providing the basis for more advanced stent designs and compatibil ity with drug eluting stents. Stents represent one of the fastest growing segments of the medical device market. From their introduction in 1990, the stent market has grown to 5 billion in 2005. To achieve the objectives of the Phase I, Faraday will compl ete tasks that include establishing a stent pattern on nitinol tubes, building and using a bench-scale processing apparatus to fabricate stents using the Faradayic ElectroEtching Process, analyzing the stents in terms of required dimensional and surface co ndition, and compiling a manufacturing process flow and economic assessment. This effort is designed to transition into a Phase II program, in which a range of stent designs would be manufactured, in pilot-scale equipment. PUBLIC HEALTH RELEVANCE: The proposed program will enable high yield, high precision manufacturing of expandable vascular endoprostheses devices, or stents. Increasing the yield and precision of the stent will lower the cost and failure rate of these devices, with immediate benefi t to the public health. Furthermore, this manufacturing technology will enable more advanced stent designs and is compatible with drug eluting stents.

Principal Investigator:

Alonso Lozanomorales

Business Contact:

Maria Inman
Small Business Information at Submission:


EIN/Tax ID: 131134791
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No