USA flag logo/image

An Official Website of the United States Government

Failure Initiation Prediction for Reliability-Based Design of Hybrid Composite…

Award Information

Agency:
Department of Defense
Branch:
Air Force
Award ID:
90161
Program Year/Program:
2010 / STTR
Agency Tracking Number:
F08A-025-0080
Solicitation Year:
N/A
Solicitation Topic Code:
AF 08T025
Solicitation Number:
N/A
Small Business Information
Firehole Technologies, Inc.
210 South 3rd Street, Suite 202 Laramie, WY 82070-3658
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: Yes
 
Phase 2
Fiscal Year: 2010
Title: Failure Initiation Prediction for Reliability-Based Design of Hybrid Composite Materials
Agency / Branch: DOD / USAF
Contract: FA9550-10-C-0027
Award Amount: $750,000.00
 

Abstract:

The objective of this project is to develop extensions to Multicontinuum Technology (MCT) that enable accurate and efficient analysis of textile composite structures. In addition, probabilistic analyses will be performed to demonstrate the applicability of MCT for textile composite material selection and structure design. The project will build on the successful two-constituent MCT by generalizing the algorithms that access constituent information so they can be applied routinely to 3 or more constituents. The accessed information will serve as the basis for developing local (mesoscale) material failure predictions as was successfully demonstrated as viable in the Phase I project. These failure prediction capabilities at the local mesoscale will enable enhanced fidelity of material degradation modeling for the development of accurate progressive failure analysis capabilities. The modeling capabilities will be validated by comparison with existing and newly generated experimental data for the weave material and its structural application in a pi-joint. The capabilities developed will be automated for use within the modeling environment of the commercial finite element code ABAQUSr and embodied in the commercial code Helius:MCTr. The methods will be generally applicable for finite element structural analysis of composites composed of textile or hybrid materials. BENEFIT:  A software application capable of simulating the behavior of textile composite structures has wide-spread potential applications. Military applications include aircraft structures like the F-35 / JSF, composite armor for patrol and combat vehicles and next generation helicopter rotors. Commercial application include Wind turbine blades with built-in passive pitch control, advanced sporting goods technology such as golf clubs and tennis racquets, and high end automotive application such as Formula 1 cars. The benefits of the technology proposed include reduced need for costly testing programs, more highly optimized composite designs, as higher degree of confidence when redesigns are necessary, and shorter development cycles for composite structures by enabling more "certification by simulation."

Principal Investigator:

Don Robbins
Chief Engineer
3074604763
robbinsd@fireholetech.com

Business Contact:

jerad stack
CEO
3074604763
stackj@fireholetech.com
Small Business Information at Submission:

Firehole Technologies
210 s. 3rd Suite 202 Laramie, WY 82070

EIN/Tax ID: 830333487
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Research Institution Information:
University of Wyoming
1000 E. University Ave
Laramie, WY 82072
Contact: Mark Garnich
Contact Phone: 3077662949