USA flag logo/image

An Official Website of the United States Government

Development of Novel Diagnostics for Fragile X Syndrome

Award Information

Agency:
Department of Health and Human Services
Branch:
N/A
Award ID:
89261
Program Year/Program:
2010 / SBIR
Agency Tracking Number:
HD058387
Solicitation Year:
N/A
Solicitation Topic Code:
NICHD
Solicitation Number:
N/A
Small Business Information
JS GENETICS, LLC
RICHARD CHAMPAGNE 397 POST ROAD, SUITE 203 DARIEN, CT -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 2
Fiscal Year: 2010
Title: Development of Novel Diagnostics for Fragile X Syndrome
Agency: HHS
Contract: 2R44HD058387-02
Award Amount: $1,069,800.00
 

Abstract:

DESCRIPTION (provided by applicant): Fragile X Syndrome (FRAX) is the most common genetic cause of mental retardation in males. FRAX is caused by the expansion of a CGG trinucleotide repeat of the 5' untranslated region (UTR) of the FMR1 gene. In norma l individuals, the 5' UTR of the FMR1 gene contains 5 to 45 CGG repeats; however, individuals with FRAX have over 200 repeats. Presently, Southern Blot analysis is used to determine the size of the repeat segment and methylation status of the FRAX gene. Th is test only detects the gross size of CGG repeats and is labor intensive and expensive. PCR and gel electrophoresis is typically used to determine the size of the CGG expansion. This approach is limited, as PCR reactions typically fail to amplify long str etches of CGG expansions (gt25 repeats) and molecular weight determination by electrophoresis via capillary or slab gels is labor intensive. In our Phase I SBIR award, we developed a novel, highly efficient and accurate screening test for diagnosing FRAX. In Step 1, Whole Genome Multiple Displacement Amplification using 7-deaza-2-Guanosine (7-deaza GTP) nucleotide analog is incorporated into multiple copies of the CGG FMR1 expansion. In Step 2, Site Specific Multiple Displacement Amplification (SSMDA) usin g 7-deaza GTP is performed to weaken the GC base pairings, making the GCC expansion more accessible to Taq DNA Polymerase in real-time PCR. In Step 3, SSMDA is followed by quantitative assessment of the numbers of CGG triplet repeats using TaqMan real-time PCR without the need for sizing by gel electrophoresis or Southern blotting. We hypothesize that using this new molecular-based method, we can develop an effective, rapid and low-cost screening test for FRAX with broad commercial application. In this Pha se II application we propose to: SA1: Optimize our assay for CGG repeat copy number determination using a large number of DNA samples with varying degrees of CGG repeats. SA2: Test our assay in a clinical FRAX diagnostic laboratory. SA3: Test our assay in blood spots for potential newborn screening. We anticipate that this Phase II application will lead to the optimization and implementation of a test that is suitable for low cost high-throughput screening for FRAX. As such, this test has the potential to markedly change how we currently screen for FRAX. These studies will involve the combined expertise of JS Genetics, which has been developing novel DNA-based diagnostic tests, and Dr. Bai-Lin Wu of Boston Children's Hospital and Harvard Medical School, who an extensive track record of developing clinical DNA diagnostic studies and in clinical laboratory testing of FRAX. PUBLIC HEALTH RELEVANCE: Fragile X Syndrome (FRAX) is the most common genetic cause of mental retardation in males. We propos e the development of a new molecular-based method, for rapid and low-cost screening of FRAX with broad commercial application.

Principal Investigator:

Seiyu Hosono
2035708275
S.HOSONO@JSGENETICS.COM

Business Contact:

Seiyu Hosono
a.mireskandari@jsgenetics.com
Small Business Information at Submission:

JS GENETICS, INC.
Alidad Mireskandari 15 Ketchum Street Westport,, CT -

EIN/Tax ID: 180052482
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No