USA flag logo/image

An Official Website of the United States Government

A Hybrid General Natural Language Processing Architecture

Award Information

Agency:
Department of Health and Human Services
Branch:
N/A
Award ID:
96394
Program Year/Program:
2010 / SBIR
Agency Tracking Number:
LM010846
Solicitation Year:
N/A
Solicitation Topic Code:
NLM
Solicitation Number:
N/A
Small Business Information
LOGICAL SEMANTICS, INC.
LOGICAL SEMANTICS, INC. 351 West 10th St, STE 347 INDIANAPOLIS, IN 46202
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2010
Title: A Hybrid General Natural Language Processing Architecture
Agency: HHS
Contract: 1R43LM010846-01
Award Amount: $148,180.00
 

Abstract:

DESCRIPTION (provided by applicant): Electronic medical records and exchanges offer new opportunities for the analysis of population health data; however, new methods in natural language processing (NLP) must first be developed to structure and codify thes e records, since most medical data is in the form of free text which cannot be stored and manipulated by computers. Once this is accomplished, population health data can be analyzed which will lead to better treatment guidelines, targeted drug therapy, and more cost effective care. Logical Semantics, Inc. (LSI) proposes to develop new statistical NLP methods for analyzing large scale medical domains. These methods will leverage LSI's semantic annotation technology, which has created the largest semantically annotated clinical corpus in the world. LSI's goal is to semantically index large medical record repositories accurately against propositions arranged in knowledge ontologies and make these indices available for text mining applications. The phase one res earch is focused on three specific aims that will lead to breakthroughs in the science of NLP: (1) Develop new statistical NLP algorithms employing a large semantically annotated medical corpus, (2) Semi-automate knowledge ontology generation, and (3) Deve lop and combine rule based with statistical NLP algorithms to create a superior hybrid NLP system. The achievement of these aims will result in computer systems that can extract the meaning from free text medical records so researchers, policy makers, and clinicians can use health analytics to improve healthcare. PUBLIC HEALTH RELEVANCE: Natural language processing (NLP) has been successful in extracting specific findings and diagnoses from free text medical records. However, for NLP to be useful in health analytics, methods must be devised to capture most of the findings in a medical record. Logical Semantics, Inc. (LSI) proposes to build new statistical algorithms that can scale against the numerous complex findings in medical reports. LSI will leve rage its advanced semantic annotation technology which employs corpus linguistics and sentential logic to build these new algorithms. The goal is to abstract over 80% of a free text records into computer readable form so that researchers can develop new tr eatment guidelines, improve decision support, and deliver more cost effective care.

Principal Investigator:

Patrick W. Jamieson
3172744829
PJAMIESO@IUPUI.EDU

Business Contact:

Jamieson
pjamieson@logicalsemantics.com
Small Business Information at Submission:

LOGICAL SEMANTICS, INC.
LOGICAL SEMANTICS, INC. 351 West 10th St, STE 347 INDIANAPOLIS, IN 46202

EIN/Tax ID: 135210640
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No