USA flag logo/image

An Official Website of the United States Government

Immunoassay for diagnosis of invasive fungal disease

Award Information

Department of Health and Human Services
Award ID:
Program Year/Program:
2013 / SBIR
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Phase 1
Fiscal Year: 2013
Title: Immunoassay for diagnosis of invasive fungal disease
Agency: HHS
Contract: 1R43GM106513-01
Award Amount: $149,043.00


DESCRIPTION: We have preliminary data for a small molecule glyco-decoy that specifically side-tracks the biosynthesis of the ligand for E-selection, and is a candidate for a novel anti-inflammatory. The three members E, L and P of the selection family areinflammatory adhesion molecules expressed constitutively on the surface of blood leukocytes and on activated endothelial cells and platelets. Discoveries of glycans sialyl LeX and sialyl Lea as mucin glycoprotein ligands for the selection family of cell adhesion proteins has stirred immense interest in pursuit of small molecules for treatment of inflammatory, vascular and cancer diseases. The underlying premise is that controlling the rate of leukocyte adhesion by antagonizing selectin-ligand interactions can lead to new therapies to combat these diseases. GlycoMimetics, Inc., has licensed a selectin ligand derivative to Pfizer in 2011 for 340M with the first indication sickle cell inflammation, as an example of the newly perceived commercial value in thisarea. We took a different approach, focusing on specificities of sets of enzymes that construct the native ligands. Among PSGL1, E selection and L selection, the latter is known to bind sulfated mucin-glycans. Our findings led to the discovery of sulfo-LeX, sulfo-Lea and various core 2 (Galss3 [Galss4GlcNAcss6]GalNAc ) glycans as the ligands for these cell adhesion proteins. In another approach, we focused on synthesis of modified analogs of monosaccharides such as 4-fluoro-GlcNAc acetates and 4-fluoro-GalNAc acetates as cell-penetrating metabolic inhibitors of the selection ligand assembly enzymes. We also synthesized small molecules as glyco-decoys to disrupt biosynthesis of natural ligands of these selections. A small synthetic glyco-decoy competes with the natural acceptor-substrate and thus diverts the synthesis of the glycan chains from endogenous glycoproteins and glycolipids to soluble ligands, which act as inhibitors of selection binding to cell-bound ligand. Secondarily, ligand absence on cell-boundmolecules in the presence of the glyco-decoy precludes adhesion events that begin the inflammatory process. The underlying theme of this strategy is that biosynthetic knowledge about specificity of key enzymes as hits is a compelling requirement for developing small molecules for therapeutic discoveries based on inhibiting selection adhesion systems. We have examined specificity of enzyme assembly of N-glycan ligands for E selections. Preliminarily, we have discovered a novel compound that disrupts the biosynthesis of glycans for E selections (patent submitted). In Phase I, the prime objective is to synthesize analogs and related compounds and test as inhibitors of E selection ligand biosynthesis in HL60 cells. CD44 is endowed with a ligand for E selection, and also has a specific receptor for hyaluronic acid, promoting migration in normal cells. CD44 is highly expressed in various cancer cells. A small molecule inhibiting biosynthesis of E selection-specific N-glycans such as in CD44 brings new potentialtools for mitigation of inflammatory disorders and adhesion events in cancer. This Phase I proposal meets the central tenet of the SBIR program for promising commercial products. PUBLIC HEALTH RELEVANCE Narrative In our work on biosynthesis of glycans andthe assembly enzyme specificities, we have found a small molecule glyco-decoy that specifically disrupts ligand synthesis for E selectin. This preliminary result foretells a whole potential set o compounds and derivatives as drugs that are cell-penetrating and can side-track biosynthetic pathways leading to inflammatory cell adhesion ligands. This has a potential application in many inflammatory diseases including cardiovascular, arthritic and cancer where adhesion molecules can play a role in migration and metastasis.

Principal Investigator:

Khushi L. Matta

Business Contact:

Roger A. Laine
Small Business Information at Submission:


EIN/Tax ID: 126411915
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No