USA flag logo/image

An Official Website of the United States Government

SBIR Phase I: Advanced Hydrodesulfurization Catalysts

Award Information

Agency:
National Science Foundation
Branch:
N/A
Award ID:
Program Year/Program:
2013 / SBIR
Agency Tracking Number:
1248696
Solicitation Year:
2012
Solicitation Topic Code:
NM
Solicitation Number:
Small Business Information
Advanced Energy Materials, LLC
201 E. Jefferson St, Suite 111B Louisville, KY 40202-1249
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2013
Title: SBIR Phase I: Advanced Hydrodesulfurization Catalysts
Agency: NSF
Contract: 1248696
Award Amount: $150,000.00
 

Abstract:

This Small Business Innovation Research (SBIR) Phase I project proposes to demonstrate the feasibility of a new type of advanced hydrodesulfurization (HDS) catalyst for deep desulfurization purposes. Specifically, metal nanoparticles supported on zinc oxide nanowires are proposed for creating higher performance, reactive adsorbent type HDS catalysts. HDS is a process used for the removal of sulfur from hydrocarbon fuels. In this process, fuels are treated with hydrogen gas in the presence of a catalyst. The environmental regulations are continuously pushing down the sulfur levels allowed in transportation fuels and will continue to lower the limits much below 10 ppm in future. Also, low sulfur concentrations are desirable for various fuel cell and refinery technologies where presence of small amounts of sulfur can poison the catalysts. The current, traditional HDS catalysts are efficient in removing the sulfur to levels down to around 20 ppm and leaves behind difficult-to-remove thiophenic sulfur compounds. In this project, an advanced catalyst and a scalable and cost-effective manufacturing is proposed that can accomplish deep desulfurization for lowering sulfur levels down well below 5 ppm. The broader/ commercial potential of this project will be improved air quality and energy/cost savings for the nation from improved durability of fuel cell and several refining technologies. The project's other outcome will also include new manufacturing technologies for advanced catalyst materials which is crucial for both the nation and the state of Kentucky to be globally competitive in terms of energy technologies. The catalyst materials using ZnO nanowire supports will also find applications beyond deep hydro-desulfurization such as C1-C4 alcohol production using syngas, and steam reforming of methanol. The market size for the proposed catalysts is estimated to exceed $1B considering the number of application areas.

Principal Investigator:

Mayank Gupta
5027189996
mayankgupta16@gmail.com

Business Contact:

Mayank Gupta
5027189996
mayankgupta16@gmail.com
Small Business Information at Submission:

Advanced Energy Materials, LLC
201 E. Jefferson St, Suite 111B Louisville, KY 40202-1249

EIN/Tax ID: 800417472
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No