You are here

Plasma-Assisted Nanostructure Synthesis For Energy, Heat-Transfer, Catalytic and Chemical Reaction Devices

Award Information
Agency: Department of Energy
Branch: N/A
Contract: DE-SC0011945
Agency Tracking Number: 212827
Amount: $150,000.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: 18b
Solicitation Number: DE-FOA-0001046
Timeline
Solicitation Year: 2014
Award Year: 2014
Award Start Date (Proposal Award Date): 2014-06-09
Award End Date (Contract End Date): 2015-03-08
Small Business Information
2109 South Oak Street, Suite 100
Urbana, IL 61820-0914
United States
DUNS: 119289051
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Brian Jurczyk
 Mr.
 () -
 bjurczyk@starfireindustries.com
Business Contact
 Brian Jurczyk
Title: Mr.
Phone: (217) 721-4165
Email: bjurczyk@starfireindustries.com
Research Institution
 Stub
Abstract

3D-nanostructured, large surface area materials are desired for a wide range of catalytic and chemical reaction devices, such as electrodes for fast-charging lithium ion batteries, compact catalytic converters for pollution control, high-speed crackers for petroleum reforming, high capacity filters and scrubbers for impurity control, high pumping speed absorbers for extreme high vacuum systems, diagnostic sensors, high density nucleation surfaces for heat-transfer and phase change materials, etc. Emerging research through DOE & apos;s SciDAC program has shown that helium bubble accumulation and migration toward the surface coupled with surface erosion seems to be the responsible mechanism. The resulting fuzz is actually in-situ generated nanotubes and nanorods from the base material protruding microns up from the surface that is highly porous with ~10% of the bulk density. Furthermore, it appears that the process is not limited to tungsten and can be extended to other metals (and possibly non-metals) over a range of temperatures. Our researchers have observed a fuzz-like interface after plasma exposure on copper, lithium, nickel and titanium at temperatures ranging from 50-250C. If true, there is potential for plasma-assisted material synthesis using low-temperature helium plasmas to engineer surfaces with extremely high-surface area for rapid chemical, heat-transfer and catalytic interaction density. The envisioned plasma-process could be a post-treatment or functionalization process on fabricated parts. This SBIR/STTR application intends to develop and commercialize processes to synthesize nanostructures on materials for high-value energy and chemical processing applications. The primary benefit to the public will be through improvement in material properties to push the bounds for temperature, energy storage, chemical reaction rate or other effect. The low-temperature plasma process could be used to across a range of energy production, storage or processing industries.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government