USA flag logo/image

An Official Website of the United States Government

Diamondlike Atomic-Scale Composite Protective Coatings for Plasma and Microwave…

Award Information

Agency:
Department of Defense
Branch:
Air Force
Award ID:
19993
Program Year/Program:
1994 / SBIR
Agency Tracking Number:
19993
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
ADVANCED REFRACTORY TECHNOLOGIES, INC.
699 Hertel Ave., Suite 290 Buffalo, NY 14207
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 2
Fiscal Year: 1994
Title: Diamondlike Atomic-Scale Composite Protective Coatings for Plasma and Microwave Devices
Agency / Branch: DOD / USAF
Contract: N/A
Award Amount: $375,000.00
 

Abstract:

Diamondlike multinetwork and network-crystalline atomic-scale composite coatings constitute a new class of materials with unique properties including high adhesion to virtually any substrate (including materials, crystalline and glass dielectrics, plastics), excellant thermal and diffusion barrier properties, good hardness, high elasticity and flexibility, very high thermal shock resistance, extremely low friction coefficient, controllable electrical properties, controllable refractive index, and good thermal stability especially in oxygen free environments. Films are deposited at low temperature (300-500K), and substrate size is limited only by chamber diameter (currently a 760mm diameter substrate can be coated). Coatings represent a significant advance over conventional diamondlike films in allowing the ability to tailor properties. A range of coating materials can be produced for potential use in a wide variety of applications. The requirement for protective and insulating devices for microwave and plasma equipment may fall well within the characteristics of these materials. The fundamental structure of these atomic-scale composites is comprised of two self-stabilized random networks, each stabilized chemically by additional atomic species. An example of such structures is diamond-like Nanocomposites (DLN) containing a C:H and a-Si:O networks. During Phase , diamondlike carbon, DLN and doped-DLN coatings will be prepared on a selected substrate, and performance compared with the existing data on DLN and DLC. Properties of the most promising material will then be optimized and its dielectric, ablation, temperature resistance and ionization behavior studied under simulator plasma device conditions to evaluate longevity.

Principal Investigator:

Dr. V. F. Dorfman
7168754091

Business Contact:

Small Business Information at Submission:

Advanced Refractory
699 Hertel Avenue Buffalo, NY 14207

EIN/Tax ID:
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No