You are here

Development of a blood test for breast cancer detection

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R43CA135803-01
Agency Tracking Number: CA135803
Amount: $99,965.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: N/A
Solicitation Number: PHS2007-2
Timeline
Solicitation Year: 2008
Award Year: 2008
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
INTEGRATED TECHNOLOGIES AND SRVCS INTRNTL 210 INDUSTRIAL PARK ROAD
JOHNSTOWN, PA 15904
United States
DUNS: 170301464
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: Yes
Principal Investigator
 () -
Business Contact
Phone: (814) 262-7331
Email: itsi@itsibio.com
Research Institution
N/A
Abstract

DESCRIPTION (provided by applicant): Mammography is the benchmark for breast disease detection and diagnosis. However, it can miss 10-15% of early stage breast cancers, and it is unable to distinguish between benign and malignant lesions with certainty. Av
ailability of an alternate method e.g. biomarker based, which allows early detection/precise distinction between benign disease and breast cancer will reduce mortality associated with breast cancer. We previously used DNA microarrays to screen gt300 blood
RNA specimens, and identified 24 RNA signatures that allowed precise identification of selected patients with breast disease. Based on the prospect of commercializing the identified biomarkers as a blood-based test for breast disease detection, we propose
to validate the candidate biomarkers using a platform that is more amenable to translation into the clinic. Objective: To develop a biomarker based blood test for breast disease detection and classification. The specific aims of the project are: 1) design
and construct QuantiGene probes for multiplexed blood RNA analysis, 2) test the probes with blood RNA samples, and develop a prototype classification model for identification of individuals with benign breast disease (BD) and breast cancer (BC) and 3) vali
date the performance of the prototype model in identifying donor categories. Methods: QuantiGene RNA probes targeting 24 biomarkers of interest and 3 housekeeping genes will be designed and constructed. Blood will be collected with PAXGene RNA stabilizatio
n tubes, from female donors (gt21y) classified as normal (n=30), with BD (n=30) and BC (n=30), and screened with the QuantiGene probes. Data will be normalized with the best housekeeping gene and analyzed. Then, a prototype classification model will be dev
eloped and validated using new samples collected from additional normal (n=10), BD (n=10) and BC (n=10) donors. Data analysis: Descriptive, graphical and non-parametric statistics will be performed to determine the pattern and significance of expression of
the biomarkers. The prototype classification model will be evaluated by calculating performance evaluation measures (sensitivity, SN; specificity, SP; and accuracy), to distinguish between high-performance classifiers and the null expectation of no signif
icant classifier. SN and SP values will be reported across a range of decision rules to generate the receiver operator characteristics (ROC). We will also assess; a) detection sensitivity, b) assay range, c) precision, d) relative accuracy and fold-change
correlations among the variables. Expected outcome: If successful, the proposed blood test will augment mammography, produce faster results, reduce the time a patient has to wait before getting a conclusive diagnosis and allow screening to be performed rem
otely. In the long run, such a test will reduce patient mortality/morbidity and overall healthcare cost. PUBLIC HEALTH RELEVANCE:Although mammography is still the best tool for screening and detection of breast disease, it can miss 10-15% of early stage ca
ncers and it is unable to differentiate between benign and malignant lesions with certainty. We propose to develop a blood based test that will complement/augment mammography, produce faster and more objective results, reduce the time a patient has to wait
before getting a conclusive diagnosis and allow many more women including those in rural and medically underserved areas to routinely test for breast cancer. The health care benefit of this test will include reduced morbidity/mortality and overall healthc
are cost/burden due to breast cancer.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government