USA flag logo/image

An Official Website of the United States Government

SBIR Phase I: Plasma Enhanched Hot Filament Chemical Vapor Deposition of…

Award Information

National Science Foundation
Award ID:
Program Year/Program:
2006 / SBIR
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
Advanced Diamond TechNologies, Inc.
48 E. Belmont Drive Romeoville, IL 60446-1764
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Phase 1
Fiscal Year: 2006
Title: SBIR Phase I: Plasma Enhanched Hot Filament Chemical Vapor Deposition of Ultrananocrystalline Diamond Thin Films
Agency: NSF
Contract: 0610914
Award Amount: $99,671.00


This Small Business Innovation Research (SBIR) Phase I project will determine the feasibility and suitability of using a plasma enhanced hot filament chemical vapor deposition (PEHFCVD) technology as a manufacturing platform for the large scale deposition of ultra nanocrystalline diamond (UNCD) thin films. UNCD is synthesized today using a unique argon-rich plasma chemistry via microwave plasma chemical vapor deposition (MPCVD). As of today, MPCVD is the only known way to deposit UNCD, since C2 and C2H radicals are produced via Penning ionization collisions between Ar+ and C2H2. HFCVD is an attractive candidate to create a more scalable and economical manufacturing platform because recent advances have made it suitable for the large area uniform deposition of microcrystalline and nanocrystalline diamond thin films, but normally only produces radicals via thermal decomposition. The focus of the proposed work is to investigate the transferability of the unique (and patented) UNCD growth process to the HFCVD platform by utilizing a DC plasma discharge to generate C2 via nonequilibrium processes in addition to thermal decomposition, and to assay the films grown in this way using a variety of material characterization techniques to ensure that the films possess the desired materials properties inherent to UNCD thin films. The commercial value of this endeavor is to increase manufacturing throughput and lower costs through the development of a more robust large-area platform for UNCD deposition as compared to MPCVD. A large area, economical platform for manufacturing UNCD would make diamond a compelling material that would become affordable for applications ranging from tribological coatings (saving energy by lowering friction); electronics (extraordinary thermal management); and biomedical devices (implantable devices such as retinal prostheses).

Principal Investigator:

James P. Birrell

Business Contact:

Neil D. Kane
Small Business Information at Submission:

Advanced Diamond Tech.
429B Weber Road Romeoville, IL 60446

Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No