USA flag logo/image

An Official Website of the United States Government

Multiplexing Cancer Sample Preparation: Indirect Immunomagnetic Enrichment

Award Information

Agency:
Department of Health and Human Services
Branch:
N/A
Award ID:
88875
Program Year/Program:
2008 / SBIR
Agency Tracking Number:
CA132049
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
ADVANCED LIQUID LOGIC
615 Davis Dr., Suite 800 PO Box 14025 RESEARCH TRIANGLE PARK, NC -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2008
Title: Multiplexing Cancer Sample Preparation: Indirect Immunomagnetic Enrichment
Agency: HHS
Contract: 1R43CA132049-01
Award Amount: $299,554.00
 

Abstract:

DESCRIPTION (provided by applicant): Biomarkers of clinical activity are critical for targeted anti-cancer therapy development and are becoming important for the care of individual patients. In a prototypical tyrosine kinase pathway, governed by the epider mal growth factor receptor (EGFR), functional activity of the pathway is assessed by the phosphorylation status of EGFR and downstream signaling intermediaries such as phospho-ERK and phospho-Akt. Interventions that block the function of EGFR (such as tyro sine kinase inhibitors or monoclonal antibodies) may lead to lack of phosphorylation of these downstream intermediaries. Traditionally, phosphorylated proteins have been analyzed by Western blots performed on tumor protein extracts from as many as 106 cell s. A method is proposed that can utilize small sample to achieve a similar level of detection of phopshoproteins in the EGFR pathway. Tumor cells would be isolated from peripheral blood obtained before and after administration of an EGFR targeted therapy a nd the phosphorylation status of key EGFR pathway intermediates would be analyzed. The proposed approach to sample preparation is based on two molecular recognition events: capture of analytes of interest (in this case, tumor cells, or their compone nts after lysis) on non-magnetic beads carrying receptors as well as codes ; and then binding these beads by magnetic beads carrying anticodes . The codes and anti-codes can simply be two complementary DNA strands. Unlike single-step magnetic-bead captur e, the proposed method allows simultaneous capture of multiple analytes by incubation with different bead types at the same time. They are then sorted by consecutive exposure to various types of decoding beads. After processing the samples to simu ltaneously capture multiple analytes of interest, the sample will be loaded onto electrowetting (EW) biochip. The sample will be subdivided into droplets of similar size and run past droplets containing decoding magnetic beads. The ability of EW chip to ra pidly process multiple droplets enables the sorting procedure. For example, different aliquots of bead suspension can be reacted with the batches of magnetic beads in different sequences, to avoid bias due to non-specific binding. The ultimate advantage is sample concentration by at least 103x and removal of background material. The sample need not be subdivided which increases the sensitivity and speed of multiplexed assays while allowing minimally-invasive sample collection. Moreover, the final analysis - immunoassay, or PCR or RTPCR, - can be performed on same chip, taking advantage of the ultimate sensitivity and dynamic range of these liquid-phase assays. Advanced Liquid Logic, Inc. will team with collaborators at Duke University's Comprehensive Cancer Center to execute this project.

Principal Investigator:

Vamsee K. Pamula
9192879010
VKP@LIQUID-LOGIC.COM

Business Contact:


information@liquid-logic.com
Small Business Information at Submission:

ADVANCED LIQUID LOGIC
ADVANCED LIQUID LOGIC 615 Davis Dr., Suite 800 RESEARCH TRIANGLE PARK, NC 27709

EIN/Tax ID: 201708967
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No