USA flag logo/image

An Official Website of the United States Government

Multi-Sampling System with Tree Architecture for Pulse Shape Analysis

Award Information

Agency:
Department of Energy
Branch:
N/A
Award ID:
72467
Program Year/Program:
2006 / SBIR
Agency Tracking Number:
79407S05-I
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
Advanced Science and Novel Technology
27 Via Porto Grande Rancho Palos Verdes, CA 90275-7848
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 2
Fiscal Year: 2006
Title: Multi-Sampling System with Tree Architecture for Pulse Shape Analysis
Agency: DOE
Contract: DE-FG02-05ER84137
Award Amount: $750,000.00
 

Abstract:

Shape analysis of pulses collected from arrays of fast particle detectors used in nuclear physics experiments requires data processing systems with fast (>500 Ms/s) sampling rates, in order to preserve the pulse shape information. Existing systems rely on multi-channel analog-to-digital converters with a single-in/single-out architecture, 8-12 bit accuracy, sampling rate below 250MS/s, low component density, and high power consumption. Improvements to the sampling rate and the input dynamic range is limited by the converter complexity, power consumption, and cost. This project will develop a novel multi-sampling system with a power-efficient, sub-Nyquist, shifted-phase, sampling tree architecture utilizing proprietary single-input/dual-output sample-and-hold amplifiers. The programmable system-on-chip also contains a signal preprocessor that performs a preliminary identification of the signal amplitude range, in order to detect the event occurrence and to extend the input dynamic range by means of the controlled signal attenuation. During Phase I, the preliminary system architecture was developed and the most critical blocks were designed and simulated. The feasibility of a novel, low-distortion sample-and-hold amplifier with a dual CMOS transmission gate was proven in computer simulations. Phase II will develop, fabricate, and test the programmable system-on-chip as an application-specific integrated circuit in SiGe BiCMOS technology. Commercial Applications and other Benefits as described by the awardee: In addition to the application for nuclear physics, the system-on-chip should find use in wireless ground stations, radar systems, software definable radio, medical diagnostic equipment, and measurement instrumentation.

Principal Investigator:

Vladimir Bratov
Dr.
3105289118
bratov@comcast.net

Business Contact:

Vladimir Katzman
Dr.
3105282532
traffic405@cox.net
Small Business Information at Submission:

Advanced Science and Novel Technology Company
27 Via Porto Grande Rancho Palos Verdes, CA 90275

EIN/Tax ID: 383654319
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No