USA flag logo/image

An Official Website of the United States Government

SBIR Phase I: Development of Manufacturing Processes for High Thermal…

Award Information

Agency:
National Science Foundation
Branch:
N/A
Award ID:
67971
Program Year/Program:
2004 / SBIR
Agency Tracking Number:
0419326
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
ADVANCED THERMAL TECHNOLOGIES
91 S. STREET UPTON, MA 01568-1445
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2004
Title: SBIR Phase I: Development of Manufacturing Processes for High Thermal Conductivity Carbon Skeletal Structures for Use in Metal and Metal Matrix Components
Agency: NSF
Contract: 0419326
Award Amount: $99,591.00
 

Abstract:

This Small Business Innovation Research (SBIR) Phase I will develop novel metal and metal matrix composite (MMC) materials that incorporate high thermal conductivity carbon (HTCC) inserts. There is a critical need for advanced materials with improved thermal properties capable of meeting the thermal management requirements of current and future high power electronic systems. The objective of this project is the development of the fundamental basis for the manufacturing processes and procedures required to produce cost-effective HTCC skeletal structure cores. This manufacturing technology would enable cost effective metal-HTCC and MMC-HTCC material systems with a thermal conductivity greater than that of copper and which have a coefficient of thermal expansion that can be adjusted between 6.0 and 10 ppm /degrees C to match that of an electronic package. The heat dissipation rate of electronic systems has increased dramatically as a result of ongoing advances in semiconductor materials, compression of circuit physical architecture, size reduction of packaging envelops and faster switching speed. High power electronics have reached heat flux levels of up to 500 W/cm2 and this level is projected to exceed 1,000 W/cm2 within several years. The results of this project couldl enable the manufacture of HTCC-based materials that achieve the target thermal properties critical to satisfying thermal management solutions for high power applications. The broader impacts that could derive from this project could be in advanced high power military and industrial systems (e.g., phased-array radar systems, high energy laser systems, power control, distribution and management systems), telecommunication base stations and finally high-end computers (e.g., servers, work stations, etc.). The commercial market for these HTCC-based materials will develop over a three to five year period, during which time HTCC-based materials will achieve widespread use in a broad spectrum of military, industrial, and commercial electronic applications driven by the need to reduce system packaging envelop coupled with the need to use more efficient, high temperature semiconductor materials that have higher heat fluxes and higher heat dissipation rates.

Principal Investigator:

James Connell
PI
5085294413
jconnell@charter.net

Business Contact:

James Connell
5085294413
jconnell@charter.net
Small Business Information at Submission:

Advanced Thermal Technologies, LLC
91 South St. Upton, MA 01568

EIN/Tax ID:
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No