USA flag logo/image

An Official Website of the United States Government

SBIR/STTR Phase I:Development of a high precision, autonomous quantum cascade…

Award Information

Agency:
National Science Foundation
Branch:
N/A
Award ID:
58512
Program Year/Program:
2002 / SBIR
Agency Tracking Number:
0215147
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
Aerodyne Research, Inc.
45 Manning Road Billerica, MA 01821-
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2002
Title: SBIR/STTR Phase I:Development of a high precision, autonomous quantum cascade laser-based detector for methane and nitrous oxide
Agency: NSF
Contract: N/A
Award Amount: $100,000.00
 

Abstract:

This Small Business Innovative Research (SBIR) Phase I project is to develop a compact and autonomous, high precision monitor for the potent greenhouse gases, methane and nitrous oxide. This proposal is submitted under the Geoscience Instrumentation subtopic (subtopic E) of the Electronics topic. The target molecules are currently detected with cw lead salt diode lasers. These lasers require cryogenic cooling and, due to their lack of long term stability, a highly trained operator. Quantum cascade (QC) lasers are spectroscopically stable and can be operated near room temperature when they are pulsed. This allows the design of compact, rugged, inexpensive and autonomous molecular monitors. This system is further simplified by detecting both methane and nitrous with a single QC laser using nearly coincident transitions near 1300 mm . The Phase I research objectives will be to demonstrate that the required sensitivity and specificity can be obtained in this spectral region using a pulsed QC laser and non-cryogenic infrared detectors. The Phase I research will produce a preliminary design for an instrument to be constructed during Phase II. The resulting turn-key monitor will address the widespread need to monitor these important species in a sensitive and cost-effective manner. Potential commercial applications for this research include 1) the research market attempting to quantify the worldwide sources and sinks of greenhouse gases, 2) the market for trading credits for greenhouse gas emission reductions which requires quantitative documentation of these reductions, 3) the market for goods and services able to identify and locate leaks in natural gas distribution systems and 4) various research markets needing to quantify methane and/or nitrous oxide concentrations or emissions in both laboratory and field settings.

Principal Investigator:

David Nelson
9786639500
ddn@aerodyne.com

Business Contact:

Small Business Information at Submission:

Aerodyne Research Inc
45 Manning Road Billerica, MA 01821

EIN/Tax ID:
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No