USA flag logo/image

An Official Website of the United States Government

Silicon Nanomembrane-Based 3-D Photonic Crystals for optical true time delay…

Award Information

Agency:
Department of Defense
Branch:
Air Force
Award ID:
94925
Program Year/Program:
2010 / STTR
Agency Tracking Number:
F08B-T08-0173
Solicitation Year:
N/A
Solicitation Topic Code:
AF 08TT08
Solicitation Number:
N/A
Small Business Information
OMEGA OPTICS, INC.
10435 BURNET RD, STE 108 AUSTIN, TX -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2010
Title: Silicon Nanomembrane-Based 3-D Photonic Crystals for optical true time delay lines having integratability with printable FETs and Antenna Elements
Agency / Branch: DOD / USAF
Contract: FA9550-09-C-0212
Award Amount: $100,000.00
 

Abstract:

Omega Optics, Inc. and the University of Texas at Austin propose Si-nanomembrane-based 3-D photonic crystal waveguides (PCW) for optical true-time-delay (TTD) lines with a fully printable phased-array antenna (PAA). The TTD lines are composed of highly dispersive slow-light enhanced Si-nanomembrane PCWs which will be integrated with Other key printable components including field effect transistor (FET) amplifiers and antenna elements on a flexible substrate such as Kapton. The slow light effect of silicon nano-membrane-based PCWs will dramatically reduce the waveguide length and therefore the payload for air-borne applications due to the enhanced time delay through wavelength tuning. The group velocity dispersion of nano-membrane-based PCW can be as high as 50 ps/nm∙mm, which is 107 times that of regular telecom fiber. Due to the enhanced dispersion, time delay of 1ns can be obtained with only 1 mm PCW employing wavelength tuning of 20nm. The fully printed (using special ink jet printer) high frequency carbon nanotube (carrier mobility of 46770cm2/V s) based FET amplifier has an expected operating frequency as high as 100GHz. For Phase I program, the feasibility will be proven of the Si-nanomembrane PCW TTD device in conjunction with other printable antenna elements. BENEFIT: Si nanomembranes are being widely investigated and have potential applications in many areas. The proposed approach will lead to a new generation of Si nanomembrane-based 3-D photonic crystal waveguide true time delay (TTD) device, which will have both military and civilian telecommunications applications. For military applications, it will be used in radar, communication, electronic warfare antenna signal processing systems, and wideband TTD applications, including phased-array beam steering, tunable microwave filtering and radar signal simulators. In optical telecommunications industry, the time delay module will provide a high performance and low cost optical buffering solution within all-optical routers. Due to the reduced size and weight, low unit cost and supreme performance, the TTD module will lead to a large market in optical/RF networking systems for both wide area networks (WANs) and metro area networks (MANs) where wired and wireless communications are combined. The fully printable technique combining carbon nanotube field effect transistor, antenna elements and the 3-D photonic crystal waveguide will provide low cost, high yield and conformal performance. This will revolutionize the phased-array radar technology for both civilian and military.

Principal Investigator:

Maggie Chen
Sr. Research Scientist
5129968833
maggie.chen@omegaoptics.com

Business Contact:

Clara Chen
President
5129968833
clara.chen@omegaoptics.com
Small Business Information at Submission:

Omega Optics, Inc.
10435 Burnet Rd., Suite 108 Austin, TX 78758

EIN/Tax ID: 743016162
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Research Institution Information:
University of Texas at Austin
10100 Burnet Rd. MERB-160
Austin, TX 78758
Contact: Ray Chen
Contact Phone: 5124717035