USA flag logo/image

An Official Website of the United States Government

Multibeam Healing for Laser Micromachining in Manufacturing

Award Information

Agency:
Department of Health and Human Services
Branch:
N/A
Award ID:
80011
Program Year/Program:
2006 / SBIR
Agency Tracking Number:
EB005646
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
Radiation Monitoring Devices, Inc.
44 Hunt Street Watertown, MA 02472-4699
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2006
Title: Multibeam Healing for Laser Micromachining in Manufacturing
Agency: HHS
Contract: 1R43EB005646-01A1
Award Amount: $198,585.00
 

Abstract:

DESCRIPTION (provided by applicant): There is a considerable interest in using laser-manufacturing methods for medical applications due to their potential to reduce cost. In fact, the precision and low-force signature of lasers makes them very attractive alternatives to traditional machining methods for brittle materials such as lutetium oxyorthosilicate (LSO) and gadolinium oxyorthosilciate (GSO) used in high-resolution medical imaging. However, material damage, especially micro-scale cracking, during laser machining is a frequently encountered problem that results in added costs, needless scrap, and reduced performance/reliability. We propose to demonstrate the feasibility of developing a multibeam laser healing technique to eliminate micro-cracks formed during laser machining of brittle materials like scintillators. We will use a simultaneous multibeam approach for micromachining and defect healing to improve the strength/reliability during laser manufacturing. Experimental investigations will be supported by finite-element modeling of the process including the calculation of damage inducing thermal-stresses. The proposed research on laser healing will significantly improve both yield and reliability during laser machining, resulting in an order of magnitude reduction in cost. Additionally, the reduced inter-pixel gaps resulting from the laser pixelation technique will significantly improve detector performance. Therefore, the proposed research has great commercial relevance, especially for high-resolution medical imaging applications.

Principal Investigator:

Bipin Singh
6176686934
BSINGH@RMDINC.COM

Business Contact:

Gerald Entine
6176686801
GENTINE@RMDINC.COM
Small Business Information at Submission:

RADIATION MONITORING DEVICES, INC.
44 Hunt Street Watertown, MA 02472

EIN/Tax ID: 042546395
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No