USA flag logo/image

An Official Website of the United States Government

A Novel Microfluidic Detector with Position Sensitivity

Award Information

Department of Energy
Award ID:
Program Year/Program:
2008 / SBIR
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
Radiation Monitoring Devices, Inc.
44 Hunt St. Watertown, MA 02472-4699
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Phase 2
Fiscal Year: 2008
Title: A Novel Microfluidic Detector with Position Sensitivity
Agency: DOE
Contract: DE-FG02-07ER84904
Award Amount: $750,000.00


Microfluidic chips, fabricated from low cost polymers, are a promising, emerging technology for synthesis and study of new molecular imaging probes. These chips can contain a variety of microcircuitry and microwells, and are capable of manipulating nanoliter samples of reagents and solvents. The microfluidic chips have been designed for a multitude of applications, such as cell incubation and radiopharmaceutical synthesis. Adding the ability to quantify and image low amounts of radioactivity on a microfluidic chip can provide researchers with a platform to investigate new imaging probes, as well as molecular processes, with radiolabeled probes in a controlled, in-vitro environment. This project will design, build, and implement a high performance, position sensitive detector that can be integrated with microfluidic chips for detection and imaging of charged particles, emitted by the radiolabeled probes present in the fluids circulating in these chips. High sensitivity detection of these charged particles is desired with high spatial resolution, along with low minimum detectable activity. The Phase I project designed and built novel position sensitive detectors for charged particle imaging that can function under conditions appropriate for in-vitro studies. The detectors were integrated with prototype microfluidic chips and their performance was evaluated. The Phase II project will optimize the proposed technology and implement it for studying biological processes at the molecular and cellular levels. Commercial Applications and other Benefits as described by the awardee: Over and above the use in nuclear medicine, the proposed detection technology will be useful in nuclear and particle physics, space research, homeland security, environmental monitoring and synchrotron studies.

Principal Investigator:

Kanai S. Shah

Business Contact:

Gerald Entine
Small Business Information at Submission:

Radiation Monitoring Devices, Inc.
44 Hunt Street Watertown, MA 02472

EIN/Tax ID: 042546395
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No