USA flag logo/image

An Official Website of the United States Government

High Reliability, Miniature Personal Hypoxia Monitoring System

Award Information

Department of Defense
Award ID:
Program Year/Program:
2009 / SBIR
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
Radiation Monitoring Devices, Inc.
44 Hunt Street Watertown, MA 02472-4699
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Phase 1
Fiscal Year: 2009
Title: High Reliability, Miniature Personal Hypoxia Monitoring System
Agency / Branch: DOD / NAVY
Contract: N68335-09-C-0289
Award Amount: $79,998.00


Accidental reduction in the oxygen available to a fighter pilot at high altitudes can lead to insidious hypoxia, where symptoms are almost unnoticeable before loss of consciousness in less than a minute. Under such situations, an accurate hypoxia monitoring unit that can predict the early onset of hypoxia - leaving sufficient time for the pilot to take remedial action - is essential. The existing commercially available technique for hypoxia monitoring, pulse oximetry, measures arterial hemoglobin oxygen saturation (SO2), but has been proven an unreliable technique for the monitoring of in-flight hypoxia. Radiation Monitoring Devices (RMD) proposes to develop a real-time, versatile near infrared spectroscopic (NIRS) instrument that can detect the onset of hypoxia with minimal false positive and false negative rates. The NIRS instrument will simultaneously measure multiple physiological parameters apart from the blood oxygen saturation, in order to infer the onset of hypoxia with no false negative rates. The instrument will also have no false positives that can cause unnecessary distraction to the pilot during crucial situations. For comfort and safety reasons, the instrument will be made highly compact and non-invasive, and will not interfere with any of the numerous life supporting equipment worn by the pilot. Additionally, the monitor will take into account the statistical variation in an individual's response to altitude and reduced pressure, to improve its accuracy and make it more universal. The Phase II prototype will be tested in hypobaric chambers used for pilot training at the end of the program.

Principal Investigator:

Rajan Gurjar
Senior Scientist

Business Contact:

Gerald Entine
Senior Scientist
Small Business Information at Submission:

44 Hunt Street Watertown, MA 02472

EIN/Tax ID: 042546395
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No