USA flag logo/image

An Official Website of the United States Government

EMG Biofeedback with AMES

Award Information

Department of Health and Human Services
Award ID:
Program Year/Program:
2007 / SBIR
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Phase 1
Fiscal Year: 2007
Title: EMG Biofeedback with AMES
Agency: HHS
Contract: 1R43NS060192-01
Award Amount: $178,775.00


DESCRIPTION (provided by applicant): The long-range goal of this project is to be able to treat effectively plegic stroke victims using a novel therapeutic regimen and robotic device called AMES, an acronym for Assisted Movement with Enhanced Sensation. In AMES, the patient assists the motion of the robotic device using biofeedback of voluntary joint torque, while the sensation of motion is enhanced by tendon vibration. In a pre-clinical trial, we showed AMES to be effective at restoring functional movem ent in both upper and lower extremities in a majority of profoundly disabled chronic stroke patients (gt2 yr event). At enrollment, these subjects ranked lt30th percentile of normal limb strength. Despite our success at treating profoundly disabled stroke victims, AMES treatment did not restore functional movement at joints (e.g., fingers, wrist, and ankle) rendered completely plegic by the stroke. Using EMG recordings, however, we found that most plegic stroke patients retain the ability to activate volunt arily the 'plegic' muscles. Because the activity is so weak and it competes with antagonistic spasticity and co-contraction, these individuals are unable to move the joint in one or the other direction. The goal of the proposed project is to incorporate EM G biofeedback into the AMES treatment, as an alternative for torque biofeedback, in order to treat effectively profoundly plegic stroke patients. There are 2 specific aims proposed in this Phase I application. The first specific aim is to convert EMG signa ls into useful biofeedback on a graphics display. Two tasks must be accomplished: (1) to develop and test software to low-pass filter the EMG signals so the bandwidth (~0-2 Hz) is matched to that of the patient's efforts and (2) to present on a graphics di splay the activity from 2 agonist and 2 antagonist muscles in a way that it is intuitive to the patients how to correct their dyssynergia. The second specific aim is necessitated by the proposed EMG acquisition in the presence of tendon vibration-mechanica l and electrical interference produced by the vibrators must be reduced in the EMG recording to levels where it does not reduce the information content of the biofeedback. Specific Aim 2 is to reduce this interference down to =2% of the overall signal ampl itude. We propose to explore a number of alternative solutions to the mechanical artifact and electrical artifact problems and to implement solutions that are effective while minimizing cost. Once we have implemented useful EMG biofeedback with the AMES de vice, Phase II of this project will test the methodology in a controlled clinical trial. This project addresses a sub-group of chronic stroke patients with complete plegia at one or more joints, but who retain some ability to activate voluntarily the 'pleg ic' muscles. Our preliminary studies indicate that a sizable proportion of the 5 million chronic stroke patients in the US are plegic at one or more joints while retaining some voluntary activation of the 'plegic' muscles. The proposed technology is design ed to permit the reversal of dyssynergia at plegic joints and, with further therapy, to restore functional movement. A separate pre-clinical trial indicates that AMES treatment is effective at restoring functional movement in individuals who chronically di sabled by traumatic brain injury (TBI). There are current about 1 million chronically disabled TBI patients in the US.

Principal Investigator:

Paul Cordo

Business Contact:

Roger Weyel
Small Business Information at Submission:


EIN/Tax ID: 201530487
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No