USA flag logo/image

An Official Website of the United States Government

Renal Injury Prevention by SF/HGF-like Small Molecules

Award Information

Agency:
Department of Health and Human Services
Branch:
N/A
Award ID:
60889
Program Year/Program:
2003 / SBIR
Agency Tracking Number:
DK062592
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
ANGION BIOMEDICA CORPORATION
51 Charles Lindbergh Blvd Uniondale, NY -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 2
Fiscal Year: 2003
Title: Renal Injury Prevention by SF/HGF-like Small Molecules
Agency: HHS
Contract: 2R44DK062592-02
Award Amount: $2,827,834.00
 

Abstract:

DESCRIPTION (provided by applicant): Chronic renal dysfunction is a progressive, degenerative disorder that ultimately results in acute renal failure and requires dialysis as an intervention, and renal transplantation as the only potential cure. Initiating conditions of renal dysfunction include ischemia, diabetes, underlying cardiovascular disease, or renal toxicity associated with certain chemotherapeutics, antibiotics, and radiocontrast agents. Most end-stage pathological changes include extensive fibrinogenesis, epithelial atrophy, and inflammatory cell infiltration into the kidneys. Scatter factor, also known as hepatocyte growth factor (SF/HGF), is a pleiotropic growth factor that induces the activation and proliferation of diverse cell types, largely through its mitogenic, motogenic, morphogenic, and anti-apoptotic activities. Several recently published studies have demonstrated the therapeutic potential of exogenously administered SF/HGF in the treatment of animal models of toxic, obstructive and ischemic renal disease. The clinical development of protein-based therapies has been hampered by potential immune responses, protein instability, and cost-prohibitive production schemes. We have developed a small molecule mimetic of SF/HGF, called C6, which holds significant potential to overcome these shortfalls. C6 recapitulates many of the bioactivities of SF/HGF, both in vitro and in vivo, by activation of the SF/HGF receptor, c-met. In order to explore further the therapeutic potential of C6 in renal dysfunction, we propose to evaluate the in vivo efficacy of C6 in chronic renal disease secondary to ureteral obstruction, renal ischemia, or heavy metal toxicity; determine the proteomic mechanism of action of the C6 in renal protection and regeneration; and determine the pharmacokinetics, biodistribution and toxicity of C6. It is our expectation that C6 will demonstrate efficacy similar to SF/HGF administration in the treatment of obstructive, ischemic and toxic renal injury, and will therefore hold significant clinical potential. These results will be significant, because a small molecule mimetic of the therapeutic effects of SF/HGF activity will eliminate many of the logistical shortcomings of protein-based therapeutics. Successful completion of the proposed studies is expected to provide sufficient data to seek regulatory approval for initiation of clinical trials of C6.

Principal Investigator:

Parakash Narayan
5165629446
PNARAYAN@NSHS.EDU

Business Contact:


5168696400
Small Business Information at Submission:

ANGION BIOMEDICA CORPORATION
14 BOND STREET SUITE 100 GREAT NECK, NY 11021

EIN/Tax ID: 113430072
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No