USA flag logo/image

An Official Website of the United States Government

Coke Resistant Catalyst for the Partial Oxidation Reforming of Hydrocarbon Fuels

Award Information

Agency:
Department of Energy
Branch:
N/A
Award ID:
37315
Program Year/Program:
1997 / SBIR
Agency Tracking Number:
37315
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
Aspen Systems, Inc.
184 Cedar Hill Street Marlborough, MA 01752-3017
View profile »
Woman-Owned: No
Minority-Owned: Yes
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 1997
Title: Coke Resistant Catalyst for the Partial Oxidation Reforming of Hydrocarbon Fuels
Agency: DOE
Contract: DE-FG02-97ER82332
Award Amount: $75,000.00
 

Abstract:

57 Coke Resistant Catalyst for the Partial Oxidation Reforming of Hydrocarbon Fuels--Aspen Systems, Inc., 184 Cedar Hill Street, Marlborough, MA 01752-3017; 508-481-5058 Dr. Wendell E. Rhine, Principal Investigator Mr. Hamed Borhanian, Business Official DOE Grant No. DE-FG02-97ER82332 Amount: $75,000 One of the attractive approaches to developing advanced transportation technologies is the proton-exchange-membrane (PEM) fuel cell which is considered a potential replacement for the internal combustion engine. PEM¿s, which offer high power density and faster start-ups, can be fueled from any hydrogen-rich material such as natural gas, methanol, petroleum distillates, etc. However, fuel cell performance is degraded by catalyst poisoning. This project is to develop catalysts to use with a leading fuel reforming technology called "partial oxidation" that converts hydrocarbons to hydrogen fuel at low temperatures. In Phase I transition metal carbides will be investigated that have been shown to be excellent partial oxidation catalysts and resist deactivation due to coking. These transition metal carbides will be synthesized, characterized, and evaluated as partial oxidation catalysts for the reforming of octane during this phase. The catalysts will be characterized by determining their surface area, pore size and pore size distribution, particle size, crystallinity, and presence of impurity phases. Their catalytic activity for the partial oxidation reforming of octane at temperatures between 400 and 900oC will be determined. Commercial Applications and Other Benefits If the proposed research is successful, non-noble metal catalysts will be identified that are resistant to coking and give better long term performance than currently available catalysts. In addition to being resistant to deactivation due to coking, it is expected that the catalysts would not be deactivated by sulfur in the fuel. This fact is a very important aspect of the proposed catalysts that would make on-board reformers of hydrocarbon fuels practical.

Principal Investigator:

Dr. Wendell E. Rhine
Senior Scientist
5084815058

Business Contact:

Mr. Hamed Borhanian
VP
5084815058
Small Business Information at Submission:

Aspen Systems, Inc.
184 Cedar Hill Street Marlboroug, MA 01752

EIN/Tax ID:
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No