You are here

Characterization and Mitigation of Radiation Effects in Quantum Dot Based Nanotechnologies

Award Information
Agency: Department of Defense
Branch: Defense Threat Reduction Agency
Contract: HDTRA1-10-C-0075
Agency Tracking Number: T2-0172
Amount: $749,996.00
Phase: Phase II
Program: SBIR
Solicitation Topic Code: DTRA082-001
Solicitation Number: 2008.2
Solicitation Year: 2008
Award Year: 2010
Award Start Date (Proposal Award Date): 2010-08-01
Award End Date (Contract End Date): 2012-07-31
Small Business Information
215 Wynn Dr., 5th Floor
Huntsville, AL -
United States
DUNS: 185169620
HUBZone Owned: No
Woman Owned: Yes
Socially and Economically Disadvantaged: No
Principal Investigator
 Alex Fedoseyev
 Senior Principal Engineer
 (256) 726-4889
Business Contact
 Deborah Phipps
Title: Sr. Contracts Specialist
Phone: (256) 726-4884
Research Institution

For applications in DoD satellite systems, devices based on novel nanomaterials offer significant advantages over traditional technologies in terms of light-weight and efficiency. Examples of such novel devices include quantum dot (QD) based solar cells, photodetectors, radars and sensors. However, the response of these devices to radiation effects is not well understood, and radiation effects modeling tools are not yet available. To enable better characterization and mitigation of radiation effects in nano-technology microelectronics, CFDRC, in collaboration with Rochester Institute of Technology (RIT) and Naval Research Laboratory (NRL), proposes the following innovations: (a) New, accurate physics-based 3D device and photo-generation models for QD-based photovoltaic nanotechnologies; (b) Accurate and cost-effective modeling of radiation effects in advanced QD-based devices and circuits, enabled by enhancements to CFDRC’s NanoTCAD 3D/mixed-mode simulator; and (c) Simulation-supported design and validation of minimally-invasive mitigation techniques for radiation effects in advanced QD-based solar cells and photodetectors. In Phase I, representative novel QD-based solar cells were used for ‘proof-of-concept’ characterization of radiation effects by means of 3D/mixed-mode simulations, validated on relevant physical experiments from RIT. Plans for radiation-effects mitigation methods have been developed. In Phase II, the NanoTCAD simulator efficiency will be significantly improved by multi-scale (quantum-continuum-circuit) and behavioral modeling. Radiation effect models and mitigation methods for novel QD-based nanotechnologies important to DoD will be numerically explored, verified, and demonstrated.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government