You are here

Division of Epidemiology, Services and Prevention Research (DESPR)


A. Prevention Research Branch (PRB). The Prevention Research Branch (PRB) supports a program of research in drug abuse and drug related HIV prevention to (1) examine the efficacy and effectiveness of new and innovative theory-based prevention approaches for drug abuse, drug-related HIV/AIDS and other associated health risks, (2) determine the cognitive, social, emotional, biological and behavioral processes that account for effectiveness of approaches, (3) clarify factors related to the effective and efficient provision of prevention services, and (4) develop and test methodologies appropriate for studying these complex aspects of prevention science.

Prevention Research. Rigorous scientific prevention research is encouraged to study novel approaches to substance abuse prevention for use at multiple levels of the social environment including: the family, schools, peer groups, community and faith-based organizations, the workplace, health care systems, etc. The purpose of this research is to determine the efficacy and effectiveness of novel program materials, training strategies, and technologies developed to prevent the onset and progression of drug abuse and drug-related HIV/AIDS infection. Materials and technologies may target a single risk-level or may take a comprehensive approach encompassing audiences at the universal, selective, and/or indicated levels. Universal interventions target the general population; selective target subgroups of the population with defined risk factors for substance abuse; indicated interventions target individuals who have detectable signs or symptoms foreshadowing drug abuse and addiction, but who have not met diagnostic criteria. NIDA encourages the development and testing of innovative prevention intervention technologies that are sensitive and relevant to cultural and gender differences.

1. Laboratory studies of the underlying mechanisms and effects of various prevention approaches such as persuasive communication (e.g., mass media and print media) as they are affected by and effect drug related cognition, emotion, motivation and behaviors.

2. Decomposition of prevention programs, practices and strategies to understand components that account for program effectiveness.

3. Research on features of prevention curricula, materials, implementation, approaches, training, technical assistance, and systems integration that contribute to positive outcomes.

4. Training modules and ongoing technical assistance for program implementers of research based substance abuse prevention programming strategies.

5. Prevention intervention dissemination technologies and mechanisms that integrate research with practice; specifically the transfer of drug abuse prevention information to decision-makers, funders, and practitioners.

6. Prevention services research on the organization, financing, management, delivery, and utilization of drug abuse prevention programs.

7. State-of-the-art and practical strategies for the integration of evidence-based prevention approaches into existing prevention service delivery systems.

8. Studies that develop and assess reliability and validity of developmentally appropriate self-report, physiological, and biochemical measures for use in prevention trials in a variety of settings and a variety of audiences.

9. Development of and testing of environmental change strategies for schools, neighborhoods, communities, etc. to use in reducing substance use initiation and/or progression.

10. Development of practical and affordable community tools for: needs and resource assessment, selection of appropriate evidence-based programs and strategies, high-quality implementation of identified programs and strategies, evaluation at community, organization and individual levels, and sustainability.

11. Drug abuse prevention methodological research on promising data collection, data storage, data dissemination, and reporting techniques.

12. Promoting wider and more effective (e.g. with enhanced fidelity) use of evidence-based prevention interventions for substance abuse and related HIV prevention, including interventions made available thru CDC and other federal agencies.

13. Studies applying technologies and strategies that have been developed for use in other disciplines in order to examine the utility of their application for drug abuse prevention, such as virtual reality technologies being used for some clinical conditions (e.g. phobias, eating disorders), and serious video games are being used for some clinical conditions (e.g., cancer patients), but not for drug abuse prevention.

14. Development and testing of innovative drug abuse prevention intervention products, using discoveries from the basic biological (e.g. neurobiological), psychological (e.g. emotional, behavioral, cognitive, and developmental) and social (e.g. social learning, peer network, and communications) sciences.

15. Development and testing of adaptations for efficacious prevention research approaches to make these more appropriate for special populations including racial and ethnic minorities, non-English speaking populations, immigrant populations, rural and migrant populations, low literacy populations, or persons with disabilities.

16. Development of methods, state-of-the-art tools and systems for community coalition-building.

17. Development and testing of tools to measure intervention costs, cost effectiveness, and net economic benefits.

18. Development and testing of rapid assessment tools of sexual and drug use risk behaviors for use in health care and public health environments, including STI clinics and AIDS research centers.

19. Development and testing of tools to promote security and appropriate prescribing of scheduled prescription drugs. Technologies can be developed to assist medical professionals, schools, service providers and others in making prescribing decisions, educating patients and their caretakers, or dispensing and monitoring of medications.

20. Development of new technologies to support drug abuse prevention interventions with military personnel, veterans and their families. Tools can include adaptations of efficacious and effective drug abuse prevention interventions to maximize health care efficiencies and to address negative life stress resulting from sustained combat operations, a major contributor to both the onset and exacerbation of substance abuse and mental health problems.

21. Development of new technologies for delivery and implementation of efficacious drug abuse prevention interventions for rural and frontier communities.

Augie Diana, Ph.D.



B. Epidemiology Research Branch (ERB). The ERB supports a research program on drug abuse epidemiology that includes (1) studies of trends and patterns of drug abuse and related conditions such as HIV/AIDS in the general population and among subpopulations, (2) studies of causal mechanisms leading to onset, escalation, maintenance, and cessation of drug abuse across stages of human development, (3) studies of person–environment interactions, (4) studies of behavioral and social consequences of drug abuse, (5) bio-epidemiologic studies including genetic epidemiology studies, (6) methodological studies to improve the design of epidemiologic studies and to develop innovative statistical approaches, including modeling techniques.

1. Improvement of Reliability and Validity of Reporting of Sensitive Data. The reliability and validity of self-report of drug use and related behaviors (e.g., HIV risk behavior) is a matter of great concern. Use of new technologies for real time data collection in ecological settings is of great interest because these technologies enable collection of drug consumption data in context. Studies to improve methodologies based on variations of standard survey protocols or computer-assisted self-interview (CASI) and personal interview (CAPI) are also encouraged.

2. Instrument Development. Easy-to-use assessment instruments are needed to enhance epidemiology research. Areas of interest include but are not limited to:

a. Community Assessment. The development of community diagnostic instruments for psychometrically sound assessment of community characteristics is essential to improve our understanding of how community factors affect drug abuse and ensuing behavioral and social consequences. Standardized assessments of community characteristics are needed to better understand the full impact of drug use and to develop targeted interventions to specific community needs.

b. Assessment of Psychiatric Comorbidity in Community Settings. Easy to use, reliable, and valid instruments are needed to assess psychiatric comorbidity in different populations of drug abusers, including adolescents and those in community drug abuse treatment settings.

c. Assessment Instruments to Measure CNS Function Related to Drug Abuse. The development of age-appropriate assessment instruments to measure behavioral and cognitive function over the course of development will contribute to our understanding of vulnerability to drug abuse and functional impairment due to drug use.

3. Development of State-of-the-Art Mechanisms for Epidemiological Research. The development of state-of-the-art mechanisms to facilitate the use of Geographical Information Systems (GIS) in community epidemiology studies (for example Community Epidemiology Work Groups) and other drug abuse research is if great interest. There is a need for enhanced software and hardware for GIS interfaces, database management, visualization, and innovative spatial analysis capabilities. The role of GIS in public health management and practice continues to evolve. Application of this technology is an important step towards better understanding drug abuse issues and their inherent complexities. The ability to evaluate geospatial information provides a unique perspective of public health issues such as emerging and shifting epidemics, the utilization of treatment services, and rapid assessment of the impact of incidents ranging from natural disasters to bioterrorism. When used alongside more traditional epidemiological techniques, GIS provides epidemiologists the ability to address new questions, refine, or enhance existing analyses.

Bethany Deeds, Ph.D.



4. Improving Measures of Addiction Risk. Individual differences in risk for drug addiction are often expressed in degree rather than kind, that is, as gradations along an underlying continuum that stretches from unobservable variations in risk for addiction to extreme and fully debilitating addiction severity. Assessment instruments in use today for measuring drug addiction (i.e., compulsivity in seeking and using drugs despite harmful consequences) have proven reliability and validity, but are of limited use for evaluating individual differences in risk for drug addiction. Advances in computerized adaptive testing methods, computer-assisted technologies, and psychometrics, including item response theory, suggest that the capabilities now exist for the development of the next generation in addiction assessment. New assessment instruments are needed to detect meaningful variation between, within, and across individuals over time that is scalable along the dimension of risk for addiction; these instruments should allow for efficient assessment of the risk construct with minimal burden for administration, training, and cost to the researcher, clinician, research participant, or patient; and they should ultimately provide valid and reliable scores corresponding to established diagnostic criteria for substance use disorders.

Elizabeth Lambert, M.Sc.



5. Developing, Validating, Refining Tools for Ecologic Momentary Assessment. Ecologic Momentary Assessment (EMA) includes the measurement of exposures and events in real time as they occur, and in the natural environment where they occur, such as the home, neighborhood, or workplace. EMA tools include portable technologies for longitudinal data collection in the field, such as mobile phone electronic diaries and PDAs, geopositioning devices, motion sensors, biosensors, environmental sensors, and audiovisual devices. In addiction and behavioral research, new EMA tools may enhance the contextual and temporal resolution of exposures, and the biological or behavioral processes presumed to occur in response. Specific challenges to address in the implementation of EMA include optimizing the timing of measurement and data quality, establishing sensor validity and reliability in different populations, reducing intensely longitudinal data for statistical analysis, achieving user acceptability, and safeguarding user privacy. Studies are encouraged that address these and other challenges to improve the validity and acceptability of EMA tools.

Louise Eideroff, Ph.D.



C. Services Research Branch (SRB). The SRB supports a program of research on the effectiveness of drug abuse treatment with a focus on the quality, cost, access to, and cost-effectiveness of care for drug abuse dependence disorders. Primary research foci include: (a) the effectiveness and cost-benefits and cost-effectiveness of drug abuse treatment, (b) factors affecting treatment access, utilization, and health and behavioral outcomes for defined populations, (c) the effects of organization, financing, and management of services on treatment outcomes, (d) drug abuse service delivery systems and models, such as continuity of care, stages of change, or service linkage and integration models, and (e) drug abuse treatment services for HIV seropositive patients and for those at risk of infection.

1. Drug Abuse Treatment Economic Research. This initiative will support research to design and develop data systems for financial management and economic analysis of treatment programs and larger systems in new healthcare settings and managed care networks. Managerial decision-making requires the implementation of sophisticated data systems to facilitate routine budgeting processes, allocation of resources, performance measurement, and pricing decisions. The focus is on the needs of managers within the organization and managers outside of the organization. Data system development must be based on standard cost behavior and profit analysis. Data systems must be designed with correct cost concepts (accounting and economic) in order to permit cost and pricing decisions to be developed for new treatment technologies and management of ongoing systems. In research settings, such an initiative is vital for the assessment of new technologies developed for transfer to practice.

2. Determining the Costs of Implementing Evidence-Based Practices (EBPs) and Other Technologies in Drug Abuse Treatment. Research shows that new technologies or evidence-based practices (EBPs) can improve drug treatment outcomes, and it has been asserted that large-scale drug abuse treatment improvement requires systematic implementation of proven practices, processes, and technologies. Often, however, new drug treatment approaches are not adopted or sustained in usual practice, even in programs that served as settings for research showing their effectiveness. This may be due in part to a poor understanding of the initial or ongoing costs entailed by new practices, processes, or technologies (hereafter referred to as technologies). Methods and tools need to be developed and tested to help drug abuse treatment service providers and payers arrive at realistic estimates of the costs of implementing and sustaining new technologies in usual practice settings. With regard to new technologies, implementing is defined as an ongoing process of selecting, adopting, and adapting these new technologies into ongoing treatment, particularly with consideration for the local setting, population and available resources. Sustaining is defined as an ongoing process of providing needed resources (such as staffing, training, and equipment), maintaining the quality of the new technology through evaluation, monitoring, and improvement, and determining its ongoing utility compared to alternatives. The tools and methodologies should be able to identify and estimate costs separately for implementing and for sustaining new technologies, and should consider both clinical and administrative technology. At a minimum, domains in which costs should be estimated include assessment of programmatic need, appropriateness, and value; staffing qualifications (salary and competencies); training, support, equipment, and other infrastructure requirements; information / data requirements; quality monitoring and improvement; and evaluation of outcomes.

Sarah Duffy, Ph.D.



3. Personnel Selection Technology Research for Drug Abuse Treatment Clinics. Research is showing that employee turnover is a substantial problem among substance abuse treatment services providers. Applications supporting innovative research that develops and validates generic staff selection systems which could be adopted and tailored for use by drug abuse treatment clinics are welcome. Like many small businesses, drug abuse treatment clinics have problems attracting and retaining qualified personnel. Also like many small businesses, treatment clinics have limited resources to apply to the recruiting, screening, and hiring of new and replacement personnel. Research has shown that the application of standardized screening and selection methods designed to maximize person-job fit can cost-effectively reduce staff turnover. Systematic methods such as background inventories, protocol-driven interviews, aptitude tests, and credit checks have demonstrated validity for improving person-job fit. Examples of possible projects might include development of easy-to-understand guidance about legal considerations in hiring practices, software that transform job task analysis into selection criteria, interview protocols to standardize applicant screening, tolls to help improve recruitment, and/or self-paced training for hiring officials or interview panels to improve screening reliability.

4. Customer Retention Technology. Premature disengagement from drug abuse treatment participation is a common problem and ranges from approximately 30 to 60% based upon the clinic and modality studied. Past research has very frequently attributed dropping out of treatment to participant characteristics (e.g., motivation, addiction severity, comorbidity) and/or environmental factors (e.g., social pressures, unemployment, homelessness). Seldom has the dropout problem been studied in the context of customer satisfaction. That is, there is little research looking at the causes of dropping out of treatment attributable to organizational factors (e.g., policies, practices, context) that influence participant withdrawal decisions. Needed are tools and systems for assessing and surveying drug abuse treatment program participant perceptions and satisfaction levels, summarizing and report participant assessments, interpreting results, and adjusting policies and practices to improve satisfaction and participant retention in treatment.

5. Effective Management and Operation of Drug Abuse Treatment Services Delivery. The bulk of drug abuse treatment is conducted in small clinical settings with therapeutic staffs of less than a dozen people. Small clinics lack resources to help improve efficiency and effectiveness in both business and therapeutic practices. Areas that may be of interest to small businesses include, but are not limited to:

a. Computer-based leader/manager self assessment tools: On-line and other types of tools to help those supervising the delivery of drug abuse treatment services to gain insights about personal strengths and weaknesses, and to help guide them to improved leadership and management practices.

b. Organizational change tools: Handbooks describing step-by-step way to introduce more efficient business practices such as quality management/monitoring, creating empowered work teams, formalized goal setting, improved customer relations, forming organization linkages, and adopting new fiscal and resource management techniques.

c. Organizational change tools: Handbooks describing step-by-step ways to introduce more efficient or effective therapeutic practices such as, adding pharmacotherapy in a previously drug-free clinic, adopting new medical/pharmacotherapy or behavioral interventions, and adopting new approaches to clinical collaboration and/or case management.

6. Assessment Tools for Quantifying and Organizational Culture that Promotes and Sustains a Drug-Free Workforce. Though drug-free workplace programs are ubiquitous in large businesses, small businesses often lack the staff and resources to create effective drug-free programs because they may involve in-house or contract experts to educate, train, monitor, and enforce policies and practices that will sustain a healthy workforce and a safe and healthy workplace. Though there are numerous model drug-free workplace policies and programs provided free by federal, state, and local governments as well as nongovernmental organizations, many fail to provide management with affordable or free, easy-to-use tools to assess the baseline of their organizations’ culture for drug abuse intolerance, and to monitor progress in building a drug-free organizational culture. Research shows that individual employees and organizations vary in their support for a drug-free workplace. Surveys indicate that coworker tolerance for illicit drug use varies by the type of drug, the type of industry, and the work role of the respondents. A drug-free culture creates commonly-held attitudes, beliefs and practices among employees that are socially reinforced. Once established, the need for costly external incentives and other measures abates as coworkers socialize new incumbents and enforce behavior promoting abstinence. Tools and methodologies need to be developed to a) assess an organization’s baseline culture for drug abuse intolerance both on and off the job, b) identify policies and practices that undermine a drug-free culture, c) enable the identification of programs, policies, and practices capable of helping the workforce develop/strengthen an organizational culture of intolerance for drug use, and d) estimate the impact on the organization’s quality of work-life, job safety, individual and group performance and productivity, and the profitability of the organization itself. Included would be inexpensive and easy to use tools for monitoring workforce behavior change, and changes in the impact on the organization (as outlined in “d”).

Thomas F. Hilton, Ph.D.



7. Web-Based Technologies: Transporting Services Research to Practice. This initiative will support the development and testing of the effectiveness of web-based technologies that facilitate the translation of drug abuse prevention and treatment services research into practice. The ultimate goal is the delivery of efficacious, low-cost interventions to the greatest number of individuals in community settings. Delivery of evidence-based services in community settings often is hampered by lack of state-of-the-art information about the contents of efficacious interventions, the organizational structures and processes that make effective implementation possible, and available training and technical assistance. Applications may include, but are not limited to, the development and testing of new and innovative Internet-based systems that provide practitioners with (a) current information on evidence-based treatments with the greatest promise for defined populations of drug abusers; (b) assistance in translating clinical trials data into clinically useful information; (c) information and training on how to effectively organize, manage, and deliver evidence-based prevention and treatment services; (d) strategies for organizational change and capacity building; and (e) access to training and technical assistance on the adoption of new prevention and treatment interventions.

8. New Technologies for Screening, Assessing, and Preventing Problem Drug Use and HIV, Matching Patients with Appropriate Treatment Services. Increased understanding of the complexities of problem drug use and HIV risk behaviors has sparked growing interest in and increased need for new user-friendly technologies to assist in the screening, assessment, and prevention of drug abuse and HIV, and in the matching of patients with appropriate treatment services. New technologies, including CD-ROM, hand-held, Internet, videotape, videodisc, and other electronic means have great potential for helping treatment providers in specialty and non-specialty care settings including primary care contexts to (a) screen for problem drug use and associated health problems and risk behaviors, including HIV, (b) assess the nature and degree of drug use and HIV risk behaviors, (c) embed items for screening or assessing problem drug use within existing clinical tools, (d) deliver appropriate prevention interventions, and (e) identify appropriate types and levels of treatment services for patients based on their individual treatment needs. These new technologies potentially can provide a more cost effective way of identifying problem drug use, HIV risk behaviors and infection, and associated health problems in a variety of health care settings, speeding the assessment and treatment process, and improving treatment placement decisions.

Dionne Jones, Ph.D.



9. Reintegration of Criminal Offenders into the Community. Many offenders enter the criminal justice system with drug abuse problems and related health issues. In addition to addressing these health care issues within the prison walls, treatment programs are increasingly called upon to help offenders successfully reintegrate into the community following incarceration. This often means helping offenders to manage their recovery through monitoring, linkage with continuing care services, development of social support networks, and education of friends and family members about the nature of drug abuse and the challenges facing the offender upon release from prison. It is estimated that over the next several years, more than 600,000 criminal justice offenders, many of whom have drug abuse problems, per year will be released to return to their communities. New technologies are needed to help treatment providers in the criminal justice system and in the community coordinate efforts to effectively (a) monitor offenders’ recovery once they have been released into the community, (b) prevent relapse, (c) identify relapse early and efficiently re-engage released offenders in appropriate treatment, (d) link released offenders with continuing care services in the community, (e) develop social support networks for recently released offenders in recovery, and (e) educate offenders’ family members so that they can more effectively support offenders in recovery once they have been released from prison.

Dionne Jones, Ph.D.



10. Technologies to Support Quality Improvement in Addiction Treatment Systems. New technologies to support quality improvement in community-based, addiction treatment provider systems are needed. Quality improvement methods, although well established in business and healthcare management, are underutilized in addiction treatment. Addiction treatment systems have limited resources for initiating, developing, implementing, and sustaining quality improvement practices. Most community-based provider systems have limited capacity to capture and integrate information about (a) the nature and extent of community needs and resources; (b) organizational and management processes to facilitate adoption, adaptation, implementation, and sustained use of science-based innovations; (c) implementation costs for new service innovations; (d) client satisfaction; and (e) quality of care. Centralized, automated and cost-efficient technological tools for these purposes could help provider systems improve the quality and efficiency of their treatment services, meet accreditation requirements, and reduce operating costs.

Bennett Fletcher, Ph.D.



11. Electronic Drug Abuse Treatment Referral Systems for Physicians. Research shows that primary care physicians often do not screen for drug abuse disorders. While this may be related to stigma attached to illicit drug use or to a lack of adequate health insurance, it may also be due to the lack of an adequate referral system that primary care physicians can use for the patients they identify as having a potential drug problem. The lack of a referral system places a greater burden on the physician to secure treatment resources for the patient, and also places the physician at greater risk if no appropriate treatment can be found. A practical and usable electronic drug abuse treatment referral system needs to be developed and tested for use by physicians in primary care settings, including doctor’s offices. To be effective and useful, the system needs to be targeted at local needs, for example by taking into account local private insurance coverage and the types of insurance accepted by local treatment providers. It should also include an actively-maintained database of local providers, with information on insurance carrier, geographic “catchment” area of treatment providers, types of substance disorders treated, types of co-occurring disorders (mental disorders, etc.) treated, gender, age, other pertinent treatment factors needed by primary care physicians to make appropriate referrals. The system should be designed to be reliable and efficient, allowing for appointment scheduling or other needed arrangements to ensure a successful referral. Feasibility and cost-efficiency should be carefully considered.

Richard Denisco, M.D.



Center for the Clinical Trials Network

The mission of the Clinical Trials Network (CTN) is to improve the quality of drug abuse treatment throughout the country using science as the vehicle. The CTN provides an enterprise in which the National Institute on Drug Abuse, treatment researchers, and community-based service providers cooperatively develop, validate, refine, and deliver new treatment options to patients in community-level clinical practice. This unique partnership between community treatment providers and academic research leaders aims to achieve the following objectives:

· Conducting studies of behavioral, pharmacological, and integrated behavioral and pharmacological treatment interventions of therapeutic effect in rigorous, multi-site clinical trials to determine effectiveness across a broad range of community-based treatment settings and diversified patient populations; and

· Ensuring the transfer of research results to physicians, clinicians, providers, and patients.

Materials and processes that facilitate clinical trials in community practice settings are particularly needed in this program. Areas of research include but are not limited to:

· Projects that would simplify, automate, standardize, or reduce the cost of administration of clinical research instruments used in CTN trials

· Projects that would reduce error rates in completing assessment or clinical instruments and in transmitting data to data management entities

· Projects to develop instruments that measure factors relevant and important to the conduct of addictions research, such as: the extent of craving and/or of withdrawal, the risk of addiction to a particular substance, the therapeutic alliance between patient and therapist, perceived satisfaction with health care, probabilities of a pain management patient developing dependence/abuse on pain medications, and probability of successfully completing detoxification

· Projects to develop instruments that measure and predict HIV risk behaviors

· Projects that develop and evaluate innovative diagnostic drug screening tests for drug abuse, such as oral swabs

· Projects that develop and evaluate the use of gene chip technology for drug abuse risk factors

With all questions regarding CTN-sponsored SBIR research, please contact:

Quandra Scudder



Specific projects could include:

1. Development of Combination Medication for Emergency Treatment of Opioid Overdose in the Presence of Benzodiazepines. Suspected opioid overdose—coma, apnea and pin point pupil—is treated by the administration of naloxone, which, while effective, is short-lived. Patients often leave the Emergency Room, return immediately to opioid use, and suffer dire consequences as a result. There is sufficient preclinical and clinical evidence that buprenorphine may be a more effective medication for treatment of opioid overdose in such patients. However, the clinical development of this treatment strategy has been hampered by concerns that many opioid abusers also abuse benzodiazepine, and in such patients the administration of buprenorphine may be hazardous. Fumazinil, a specific benzodiazepine antagonist used to treat benzodiazepine overdose, can be co-administered with buprenorphine and may protect such patients from the ill effects of buprenorphine in cases of overdose involving both opioids and benzodiazepine. The goal is to develop and test the buprenorphine-fumazinil combination medication formulation for the treatment of opioid overdose with suspected concurrent benzodiazepine abuse.

2. Screening and Development of Partial Agonists at the Human CB1 Receptor for Treatment of Marijuana Dependence or Withdrawal. NIDA seeks applications to screen and/or develop CB1-receptor partial agonists for application in the pharmacotherapeutic treatment of marijuana dependence or withdrawal. The potential benefits of CB1-receptor partial agonists in the treatment of dependence may parallel those of safe and effective nicotine or opiate partial-agonist replacement therapies, where buprenorphine and varenicline have demonstrated effectiveness in enhancing abstinence from opioid use and cigarette smoking, respectively. As implied by the designations of partial-agonist replacement or substitution therapy, a partial-agonist medication has core biological effects similar to those of the abused drug. Importantly however, there is a ceiling-effect dose with the administration of partial agonists not present with full agonists such that at high doses, partial agonists are less likely to precipitate adverse behavioral or biological events and to have abuse liability compared to full agonists. The phase I project should identify compounds that bind to human CB1-receptors as partial agonists and, in the phase II, the grantee should develop and evaluate selected partial agonists.

3. Improved Device to Capture and Measure Drug Use in Oral Fluid. Oral fluid (OF) testing is a promising method to monitor for drugs of abuse. The main advantages of OF is the simplicity and noninvasiveness of sample collection. Aside of patient’s/ study participant’s comfort and preference compared to urine drug screen, the oral fluid sample collection can be easily observed, obviating the need for special restroom facilities and same-sex collectors and making adulteration of the specimen more difficult. Furthermore, infection risk is lower than for drawing blood. For clinical toxicology applications, including use in clinical trials, drug treatment programs, physician office and emergency room testing, onsite OF testing would offer rapid availability of results for diagnostic or research purposes. At this point, however, Substance Abuse and Mental Health Services Administration approval of OF testing has been delayed because of questions about drug device performance, disposition of drugs in OF, and need for improvement of assays. The greatest current limitation for OF testing is the small number of controlled drug administration studies available to inform interpretation of OF tests. (Bosker, Huestis, 2009) Applications should address current limitations and present methods to remove obstacles for wider usage of OF testing in clinical practice and research.

Reference: Bosker WM, Huestis MA. Oral Fluid Testing for Drugs of Abuse. Clinical Chemistry.2009; 55:11 1910-1931

4. Improved Technology of Testing Devices to Remotely Capture and Measure Drug Use in Biological Specimens. There is an ongoing need for more accurate, practical and convenient point-of-collection testing devices for monitoring drugs of abuse. Current devices that test for illicit drugs in urine, oral fluid (saliva), sweat and hair have strengths and limitations. The goal of this solicitation is to develop new technologies/devices that will increase strengths (e.g. accuracy, practicality, and convenience) and decrease limitations (e.g. minimum frequency, contamination, and adulteration) of testing methodologies. New technology might permit testing from remote locations (e.g. patient’s or subject’s home) while ensuring real time data collection and transfer into medical records/study databases. Risk of adulteration should be minimized to a level comparable with tests provided in drug treatment centers or study sites. The phase I application should explore all tests currently available, especially new technologies allowing for remote collection of the data. In phase II, the grantee should develop and test a prototype.

5. New Technologies: Integrating Data from Prescription Monitoring Program(s) to Current Clinical Practice. In some states the prescription monitoring program collects prescription data for controlled substances into a central database that can then be used by a limited number of authorized users to assist in deterring the illegitimate use of prescription drugs. Prescribers and dispensers in some states may query the database to assist in determining treatment history and to rule out the possibility that a patient is "doctor shopping" or "scamming" to obtain controlled substances. Limited time/resources of busy medical offices are a barrier to obtaining and utilizing this information to improve quality of treatment for each individual patient. This initiative will support development and testing of the effectiveness of new technologies that facilitate utilization of data collected by Prescription Monitoring Program(s) in clinical practice. Applications may include, but are not limited to, the development and testing of new and innovative Internet-based systems that provide a) practitioners with current information of their patients’ treatment/medication compliance; and b) transfers data automatically to patients chart, etc. The goal is to minimize barriers faced by clinical staff to obtain, record and utilize the data while maintaining strict security requirements (i.e., confidentiality, integrity, and availability). These new technologies should provide a more cost effective way of identifying treatment non-compliance and help adjust a treatment plan according to the needs of individual patients as well as decrease potential diversion of controlled substances. The phase I application will explore and describe current Prescription Monitoring Programs and new technologies allowing development and testing of the application in phase II.

US Flag An Official Website of the United States Government