You are here

GPS Disruption Detection and Localization


Timing and position data from civil GPS receivers have become integral to the operation of many of the Nation’s critical infrastructures. Transportation, banking and finance, communications, and energy sectors have all leveraged the benefits of the open-access civil GPS signal to varying extents of dependence. Unfortunately, along with the benefits civil GPS brings to each of these sectors, it can also introduce dangerous sector vulnerabilities. By design, civil GPS signals are an open standard and detailed and accurate specifications of these clear access signals are readily available for both the legitimate technology developer and potential adversaries. Intentional, low-cost GPS signal disruption devices (GPS jammers), while illegal in the United States in most cases, are readily available at many internet store fronts. With some off-the shelf hardware costing a few more dollars and a couple experienced developer weeks of effort, a more sophisticated, software-configurable, intentional GPS signal manipulation device (GPS spoofer) can be home-grown and aimed at one of these critical infrastructure sectors. While civil GPS receiver-based mitigation techniques are under development or have been implemented in some cases, many are partial solutions to the potential vulnerability set. Thus, the capability to detect and localize the source of disruption remains a critical mitigation requirement across the critical infrastructure sectors. DHS desires to develop a suite of sensing and reporting technologies to quickly detect and localize intentional (jamming and spoofing) and unintentional civil GPS receiver disruption events to allow commercial and government entities to rapidly locate the disruption source(s). A key gap is our understanding of the level of reliance on GPS by various critical infrastructure sectors. In order to understand the vulnerabilities of a given sector, it is necessary to understand how, where and when the sector uses GPS in their operations and what receivers they rely on and hence what their vulnerabilities might be. Of particular interest are the energy sector, the communications sector, the transportation sector, and the emergency services sector. It is desired that the sensing system and/or reporting function of the solution leverage existing capabilities (i.e., low cost, easy integration into existing infrastructure) of one or more of the critical infrastructure sectors.

US Flag An Official Website of the United States Government