You are here

Nano-Ceramic for Metabolic Stem Cell Engineering

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R41AR051259-01
Agency Tracking Number: AR051259
Amount: $99,822.00
Phase: Phase I
Program: STTR
Solicitation Topic Code: N/A
Solicitation Number: N/A
Timeline
Solicitation Year: N/A
Award Year: 2004
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
ANGSTROM MEDICA 150 CALIFORNIA ST
NEWTON, MA 02458
United States
DUNS: N/A
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 KYONGBUM LEE
 (617) 627-4323
 KYONGBUM.LEE@TUFTS.EDU
Business Contact
Phone: (617) 596-6732
Email: EAHN@ANGSTROMMEDICA.COM
Research Institution
 TUFTS UNIVERSITY BOSTON
 
136 HARRISON AVENUE
MEDFORD, MA 02111
United States

 Nonprofit College or University
Abstract

DESCRIPTION (provided by applicant): The overall objective of this project is to develop a clinically and commercially viable tissue engineered bone construct using nanocrystalline ceramic scaffolds for proliferating and differentiating adipose-derived progenitor cells into cells of the osteogenic lineage. The use of a nanostructured hydroxyapatite (nano-HAP) scaffold offers several advantages for bone tissue engineering: 1) emerging evidence indicates that nanophase substrates enhance the adhesion and adhesion-dependent functions of anchorage-dependent cells; 2) the ceramic nature of nano-HAP affords chemical stability to the scaffold and therefore confers the advantage of long-term shape integrity; 3) the scaffolds are mechanically robust and can support and protect the bone tissue construct during the implantation procedure and within the body, thus allowing integration of culture and implant steps. Increasing evidence shows that human adipose tissue contains mesenchymal stem cells (MSCs) capable of differentiating into osteoblasts. Unlike bone marrow cells, adipose cells are easy to obtain and result in minimal patient discomfort. This Phase I STTR project leverages the unique material properties of nano-HAP against powerful cell property analysis and design tools drawn from metabolic engineering to identify optimal scaffold parameters and medium conditions for in vitro expansion and differentiation of adipose MSCs into osteoblasts. This work hypothesizes that the surface topography of nano-HAP promotes interactions between cell membrane and matrix proteins that result in greater stability of adherent cells, and thus improve adhesion dependent cell functions. The specific aims are: 1) Expansion of adipose-derived adult stem cells on idealized 2D nano-surface; 2) Induction of differentiated osteogenic function markers; and 3) Directed modulation of osteoblast function by surface property modification. These specific aims will be achieved using the following research design and methods. First, parallel cell culture experiments will compare adhesion and proliferation of human adipose progenitor cells on nano-HAP and other commonly used scaffolding material. These experiments will also evaluate the effects of varying nano-HAP grain and pore sizes with or without matrix protein pretreatment. Second, dose response experiments will be followed by a factorial design experiment to systematically explore the known differentiation factor space. A newly developed bioinformatics tool will be used to functionally relate differentiation factor doses and combinations with extent and speed of differentiation. Emphasis will be placed on selective differentiation into osteoblasts by controlling for differentiation into adipocytes. Finally, metabolic flux analysis will be performed to investigate the hypothesis that intermediary metabolism may be directed to support differentiated osteoblast function, including matrix protein deposition and bone formation (mineralization). Nano-HAP surface properties, metabolic flux distribution, and osteoblast activity will be functionally related using the aforementioned bioinformatics tool. This project is expected to identify specific scaffold properties, medium factors, or enzyme targets for enhancing osteoblast function through further metabolic engineering.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government