You are here

A Novel Nanomaterials Approach for Cancer Imaging and Therapeutic Treatment

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R41EB008907-01
Agency Tracking Number: EB008907
Amount: $449,312.00
Phase: Phase I
Program: STTR
Solicitation Topic Code: N/A
Solicitation Number: PHS2007-2
Solicitation Year: 2008
Award Year: 2008
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
United States
DUNS: 148034408
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 () -
Business Contact
Phone: (303) 792-5615
Research Institution

DESCRIPTION (provided by applicant): Cancer treatment today is in need of tumor-specific and effective therapies that do not harm the patient and thereby compromise treatment efficacy and prolong recovery time. A multi-modal therapeutic and imaging agent t
hat does not damage healthy living tissue would have tremendous benefit to researchers and victims of this deadly disease. Nanomaterials have the potential to provide the next- generation solutions that are needed, as they offer 1) a unique size range clos
ely matching that of cells (1 to 1,000 nm), 2) a substantial multifunctional capability, and 3) an inherently large surface-to-volume ratio. The proposed research will focus on synthesizing a novel nanomaterial construct and validating its effectiveness. A
s envisioned, this new construct will offer a multimodal therapeutic advantage by acting simultaneously as an image contrast enhancement agent, a targeted drug-delivery vehicle, a thermal sensitizer, and a generator of singlet oxygen. This research project
is specifically designed to address the special NIH STTR Phase I solicitation Bioengineering Nanotechnology Initiative (PA-06-008). The expanded project timeline and budget, our strong preliminary data, and the highly experienced team all combine to dir
ectly address the goals of this special NIH solicitation. ADA Technologies has assembled a highly qualified RandD team to execute this challenging project. ADA's Principal Investigator is an expert on nanotechnology and nanometrology; the academic STTR par
tners at Virginia Tech offer substantial experience and equipment for nanomaterials synthesis and hyperthermia treatment; and the Director of the Comprehensive Cancer Center at Wake Forest University offers his services as an expert consultant on cancer re
search. Given that a primitive version of the proposed nanostructure has already shown efficacy with prostate cancer cells, we will focus on prostate cancer for the initial proof of concept in Phase I. Phase I tasks are designed to validate our ability to
create the new nanomaterial structures and to demonstrate the feasibility of nanomaterials synthesis as well as hyperthermia and reactive oxygen treatments. In vitro tissue representative phantoms and preliminary in vivo models will be assessed. Phase I su
ccess will set the stage in Phase II for more-complex nanostructure synthesis (including antibody and drug-delivery targeting) and larger- scale in vivo studies. Within Phase III, we will partner will bio-pharma industry to expedite clinical studies and co
mmercialization of this promising bionanotechnology. Ultimately, this nanostructured material will benefit patients, who will receive a more effective and benign treatment protocol; researchers, who will benefit from a highly effective new multi-modal drug
agent; and the bio-pharma industry, which will have a more-marketable product for cancer treatment. The potential worldwide market could reach billions of dollars per year through the research's anticipated application to multiple cancer types. PUBLIC HEA
LTH REELEVANCE: In an age of major medical advances, tumor-specific, non-toxic and effective therapies against cancer cells do not exist as an option for today's 21st-century patients. Next-generation nanomaterials offer new avenues for more efficacious an
d harmless options for cancer treatment with their ability to be customized with imaging agents, drug molecules, and highly conducting materials for thermal treatment. The proposed, multi-phase STTR project is focused on developing a new, multi-modal nanom
aterial for treating numerous cancer types through its enhanced imaging, improved selectivity of targeted treatment, and minimally invasive therapeutic delivery.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government