Description:
A. Development of improved reagents and cost-effective methods to accurately screen and diagnose selected laboratory animal diseases, and for performing overall assessments of animal quality and health status. An urgent need currently exists for the development of improved methods for the detection of active tuberculosis in nonhuman primates.
B. Development of improved reagents and techniques for isolating and propagating stem cells, from laboratory animals. Improved methods for inducing pluripotent stem cells and stem cells of animal to differentiate along specific pathways in vitro and in vivo.
C. Development of improved reagents, techniques, and equipment for genomic and transcriptomic analysis and data mining from tissue or cells of laboratory animals and animal models of human diseases.
D. Development of new technologies to rapidly phenotype large number of animals.
E. Development of vaccines and new therapeutic agents for the prevention and/or control of selected laboratory animal diseases. One high priority need is for the development of methods to control and prevent Herpes virus B in nonhuman primates.
F. Development of commercially valuable reagents for lower organisms or established cell cultures.
G. Development of cost-effective husbandry and colony management techniques, equipment, and/or new approaches to improve laboratory animal welfare and assure efficient and appropriate research use.
H. Design of specialized equipment and caging for laboratory animals to permit optimal environmental control.
I. Identification, development, and characterization of spontaneous and engineered vertebrate animal models for studies on various types of human disease. A need exists for a small animal model of Hepatitis C virus infection in humans.
J. Development and refinement of high throughput technologies for the effective cryopreservation and long-term maintenance of laboratory animal embryos, gametes, and their predecessors.
K. Development of technologies for improved embryo transfer within a single animal species or of intraspecific embryo transfer to allow preservation of rare, unique, or endangered animal species that may have unique value as animal models for human disease.
L. Development of improved reagents, techniques, and equipment for performing and analyzing “omics” (genomics, transcriptomics, phenomics, proteomics, glycomics, epigenomics, metabolomics) in normal and disease conditions animal models.
M. Development of biological tools and reagents for reconstruction, remodeling, repair and regeneration of tissues damaged by injury or disease.
N. Development of computational science-based technologies to create fast, effective community access to preclinical animal models-based raw data, processed data, and processing tools.
Dr. Miguel Contreras
Comparative Medicine, NCRR
301-435-0744, Fax: 301-480-3819
Email: HYPERLINK "mailto:mailto:Miguel.Contreras@nih.gov"Miguel.Contreras@nih.gov