You are here

Technologies for Aerospace Experimental Capabilities


Lead Center: DFRC Participating Center(s): ARC, JSC, KSC, LaRC OCT Technology Area: TA09 The emphasis of this subtopic is proving feasibility, developing, and demonstrating technologies for advanced Aerospace research experimentation that matures new methodologies, technologies, and concepts. It seeks advancements that promise significant gains in NASA's experimental research capabilities or addresses barriers to measurements, operations, safety, and cost in all flight regimes from low sub-sonic to high supersonic to space. This subtopic solicits innovative technologies that enhance experimental research competencies by advancing capabilities for ground and in-flight experimentation. Proposals that demonstrate and confirm reliable application of concepts and technologies suitable for flight research and the test environment are a high priority. Measurement techniques are needed to acquire aerodynamic, structural, flight control, and propulsion system performance characteristics to safely expand the flight envelope of aerospace vehicles. Spacecraft guidance, navigation and Control validation techniques are needed. The goals are to improve the effectiveness of flight-testing by simplifying and minimizing sensor installation, measuring parameters in novel ways, improving the quality of measurements, and minimizing the disturbance to the measured parameter from the sensor presence. Sensors and systems are required to have fast response, low volume, minimal intrusion, and high accuracy and reliability. Special areas of interest include: • Testing and Validation for Lightweight structures and materials. • Methods and associated technologies for conducting flight research and acquiring test information in flight. • Numerical methods for the planning, prediction, analysis and validation of flight-test experimentation. • Sensors and data systems that have fast response, low volume, minimal intrusion, and increased accuracy and reliability. • Innovative techniques that decrease turn-around time for inspections and assessments for safe operations of aircraft and spacecraft (e.g., non destructive examination of composites through ultrasonic techniques). • Advanced design and manufacturing techniques for improved upper stage performance for nano- & small-satellite booster technologies (e.g., manufacturability, affordability, and performance of a small upper-stage booster rocket motors for small & nano-satellites). • Aerodynamic boundary layer and laminar flow control and drag reduction. • Precision landing systems. • Autonomous, fault-tolerant GN&C. • Autonomous Rendezvous and Docking.
US Flag An Official Website of the United States Government