You are here

Tools for Improved Exposure Assessment


Fundamental to the NIEHS mission is the ability to quantify an individual’s exposure, as well as the unique characteristics that account for individualized responses to the exposures. The goal for improved exposure assessment is to develop new technology and assays to generate precise measurements of human exposure to chemical and biological agents that may lead to disease or dysfunction. The desired application of these technologies and assays is in population-based (epidemiological) or clinical research and practice. An emphasis is placed on tools that provide individual exposure metrics either at the point of contact or through measuring internal dose of environmental agents.

It is anticipated that the new technologies and assays, such as those based on micro- and nanotechnology and molecular imaging, may provide sensitive, high-throughput, and potentially portable systems capable of measuring exposure to environmental agents and the impact of the exposures on human biology.

1. Wearable Technologies for Personal Exposure Assessment at the Point of Contact

The NIEHS is interested in developing and validating new products/devices, tools, assays to improve our ability to precisely measure an individual’s exposure to environmental agents, with high temporal and spatial resolution. Ideally, the technologies, tools and assays will be of appropriate scale to be field deployable and/or wearable. These point-of-contact devices should be capable of measuring simultaneously and in near real time, multiple agents within a single exposure class (e.g., multiple types of metals, multiple size fractions of particulate matter, multiple components of diesel exhaust) and/or multiple agents across more than one exposure class. Exposures of interest include ozone, particulate matter, diesel exhaust, metals (e.g., arsenic, cadmium, or mercury), volatile organic compounds, polybrominated diphenyls (PBDEs), polycyclic aromatic hydrocarbons (PAHs), mold/microbial toxins, allergens and pesticides/herbicides. Examples include but are not limited to:

A. Novel technologies and assays to generate precise, quantitative measures of human exposure to environmental compounds at the point of contact or in easily obtained biological samples (e.g., skin, breath, saliva, or nasal mucosa). An emphasis is placed on the ability to measure multiple analytes simultaneously.

B. Remote sensing technologies for detecting, quantifying, and monitoring household exposures to toxicants and/or bioaerosols.

2. Technologies for Generating Precise Measurements of Internal Dose of Environmental Agents

The NIEHS is interested in developing technologies and devices to generate precise measurements of internal dose of individual environmental agents and or their metabolites in real time and over time. It would be especially valuable to analyze internal dose over time of multiple agents within a single class or multiple agents across more than one class. The development of a modular design allowing measurement of specific classes of chemical exposures for application in epidemiological studies (e.g., pesticides, endocrine-active chemicals, or components of indoor air pollution) is preferred. Likewise, an emphasis is placed on measuring environmental factors with mixed routes of exposure (i.e., inhalation, ingestion, and dermal exposure) for which biomonitoring is the only comprehensive exposure metric.

Examples include but are not limited to:

A. Development of sensors for measuring the levels of toxicants in biospecimens easily attained for an individual such as finger prick, buccal cells, exhaled breath or urine.

B. The development of integrated devices linking exposure at the point of contact, internal dose, and biological response.

US Flag An Official Website of the United States Government