Description:
Background: Traffic crashes account for half of all unintentional injury deaths, are the leading cause of death for people ages 5–34 in the United States, and result in nearly 5 million serious injuries. In one-year, the cost of medical care and productivity losses associated with traffic injuries in the United States exceeded $99 billion. Globally, road traffic injuries kill 3,000 persons daily.
The risk of motor vehicle crashes is highest among teen drivers age 16- to 19-year-olds. Alcohol is a contributing factor in 37% of fatal motor vehicle crashes. In 63%HYPERLINK "http://www.car-accidents.com/pages/fatal-accident-statistics.html" of fatal crashes, the occupant killed was not wearing a seat belt. Excessive speed has been identified as a key risk factor in traffic injuries, influencing both the risk of a crash and the severity of the injuries that result.
Motor vehicle crashes result from a combination of environmental, human behavioral, and vehicle-related factors. Modifying any or all can substantially alter the risks of a crash, and the chances of survival. The ecological approach that modifying any one factor can influence all others, and that feedback loops about the performance of the vehicle, road and environment, and driver fitness will reduce risks and errors, but this requires adaptive technology. Currently, there are no readily accessible means to warn the driver of impending dangers such as perceptual deficits, driver error, hazardous road conditions and environments, and suboptimal vehicle performance that may influence crash risks. Nor are there convenient accessible databases to find affordable alternative transportation options. Drivers need such tools to make life-saving decisions easier and more automatic.
Public Health Impact: Improving safe and efficient travel is a universal goal. Reducing traffic crashes and the injuries that result is a primary goal in public health and one of CDC’s Winnable Battles. Reducing speeding, increasing safety belt use, reducing traffic exposure, and eliminating alcohol-impaired driving, fatigue and driver distraction as factors in traffic crashes could save tens of thousands of lives annually and reduce disabling injuries by more than half, in addition to saving billions in health care costs.
Examples of specific research areas of interest include, but are not limited to: CDC is particularly interested in the development of improved environmental, engineering, and human factor controls (including retrofit vehicle solutions and information technology to access to alternative forms of transportation) with the potential to reduce motor vehicle crashes and the injuries that result. Development of real-time technologies that deliver to interventions, such as “cues to safe action”, while driving, based on driver fitness, vehicle performance characteristics, environmental conditions, and road -based information. Technology that can be applied in both occupational driving and private vehicle use in domestic and global settings is of high interest, along with applications of this technology to assist persons with cognitive or psychomotor limitations (e.g. distracted, drowsy, alcohol impaired or drug impaired driving).
For NCIPC programmatic information, contact:
Dr. Paul Smutz
Extramural Research Program Office
NCIPC, NCEH/ATSDR
Centers for Disease Control and Prevention
Mail Stop F-63
4770 Buford Highway, N.E.
Atlanta, Georgia 30341
770-488-4850, Fax: 770-488-1665
Email: HYPERLINK "mailto:WSmutz@cdc.gov"WSmutz@cdc.gov
For grants specific, administrative information, contact:
Ms. Pamela Robbins-Render
Centers for Disease Control and Prevention
Procurement and Grants Office
Mail Stop K-70
2920 Brandywine Road
Atlanta, Georgia 30341
770-488-2712, Fax: 770-488-2670
Email: HYPERLINK "mailto:prender@cdc.gov"prender@cdc.gov