You are here
Bio-inspired Macromolecules Containing Atomically Precise Catalytic Active Sites
Title: Mr.
Phone: (321) 631-3550
Email: tamundsen@mainstream-engr.com
Title: Mr.
Phone: (321) 631-3550
Email: mar@mainstream-engr.com
Contact: Mitchell
Address:
Phone: (215) 707-7547
Type: Nonprofit College or University
High selectivity in chemical reactions is the key to reducing costs, energy consumption and
emissions in chemical processing. More selective and active catalysts will reduce the need for
recovering unreacted chemicals for recycle and removing byproducts. Reducing the burden on
separation processes will greatly reduce the energy required for chemical production.
We propose to design macromolecular catalysts that resemble clamshells to act as highly
selective C-H activation catalysts. These macro molecules will create complex, chiral pockets to
bind metal ions, react with oxidants or molecular oxygen and react selectively with C-H bonds in
a variety of hydrocarbon compounds.
Prof. Schafmeister and his group at Temple University have already developed large, robust,
abiotic macromolecules that resemble clamshells with programmable three-dimensional shapes.
Mainstream Engineering will evaluate the catalytic activity of these materials when exposed to a
panel of substrates to confirm the production of desired products as well as observe off-target
catalytic activity that could lead to new applications of these molecules. Mainstream will also
conduct a detailed commercialization analysis of all potential chemical pathways to ensure that
the most lucrative products and catalysts are pursued in Phase II.
The commercial applications of these catalysts are immense and include pharmaceuticals,
agrochemicals and personal care products. The public will benefit from lower cost goods as a
result of more efficiently manufacturing processes. The public will also benefit from the reduced
emissions of processes made more efficient by these catalysts.
Key Words – Catalyst, biomimetic, selectivity, asymmetric
Summary for Members of Congress: New catalysts are needed to improve selectivity and yield
during chemical processing. We are developing new materials capable of performing much more
selective chemistry than previously possible with conventional catalysts.
* Information listed above is at the time of submission. *