Description:
TECHNOLOGY AREA(S): Air Platform
OBJECTIVE: Design and develop temperature, pressure, and gas mixture composition measurement systems that will survive in harsh (2000 psi and 4000 °F) test facility flow environments.
DESCRIPTION: Hypersonic ground test facilities used in the development of high-speed flight systems currently lack a comprehensive suite of pressure, temperature, and gas mixture composition sensing systems that are able to survive long durations (5+ minutes) in high pressure (2000 psi) and temperature (4000 °F) environments. Current systems are typically actively cooled with complex water cooling systems. Water-cooled nickel and copper devices are typically employed; however, these require frequent replacement which can be costly from both material and labor standpoints. This approach leads to systems that are prohibitively expensive which limits usefulness and precludes smaller research programs from acquiring robust instrumentation suites to comprehensively evaluate the test medium. As a result, ground test programs reduce the fidelity of their instrumentation systems which could result in increased risk to future flight test programs due to the lack of sufficient ground test data. Improvements in both sensor material and installation are required to minimize sensor replacement necessary due to oxidation and wear. Sensors that do not require water cooling would be desirable. Lower cost pressure, temperature, and gas mixture composition sensing systems will allow programs to acquire the instrumentation suite necessary to evaluate the ground test facility test medium at higher levels of resolution. The higher resolution will allow test programs to determine the impact of baseline facility flow quality and test induced flow disruptions (e.g., inlet distortion) on scramjet system performance prior to flight test. Phase 1 will develop pressure, temperature, and gas mixture composition (O2 concentration, especially) sensing systems capable of withstanding 2000 psi and 4000 °F environments in a laboratory environment. Phase II will continue this sensor and instrument package development then deliver and demonstrate instruments at an Air Force test facility. In Phase III, the increasing attention being given to hypersonic flight underscores the need for improved pressure, temperature, and gas composition measurement systems. The systems developed are expected to have applicability in government and commercial hypersonic ground test facilities.
PHASE I: Develop pressure, temperature, and gas mixture composition (O2 concentration, especially) sensing systems capable of withstanding 2000 psi and 4000 °F environments in a laboratory environment.
PHASE II: Continue sensor and instrument package development then deliver and demonstrate instruments at an Air Force test facility.
PHASE III: The increasing attention being given to hypersonic flight underscores the need for improved pressure, temperature, and gas composition measurement systems. The systems developed are expected to have applicability in government and commercial hypersonic ground test facilities.
REFERENCES:
1. AIAA 1992-5105, Application of intrusive flow field probing techniques around a hypersonic lifting body at AEDC, A. Davenport, W. Strike, and J. Maus.
2. AIAA 2004-2594, Advances in Aerodynamic Probes for High-Enthalpy Applications, Heather MacKinnon, Gregg Beitel, Robert Hiers, and Daniel Catalano.
3. AIAA 2004-2592, Electroformed Diagnostic Probes for High-Temperature Gas Flows, Gregg Beitel, Daniel Catalano, Richard Edwards.
KEYWORDS: Hypersonic; High Pressure; High Temperature; Transducer