Description:
TECHNOLOGY AREA(S): Human Systems
OBJECTIVE: Develop a flexible broad-band optical device capable of measuring optical properties.
DESCRIPTION: Recent advances in compact light sources, fiber optics, and computational optics, along with a continual advancement in spectral imaging technologies, are enabling a variety of imaging and spectroscopy methods for biomedical optics, atmospheric sensing, and environmental monitoring. These technologies have been applied to non-invasively measure oxygenation in the human brain and other tissues, detect disease states, sensitive detection of contaminates in liquid or gas samples, and diffuse reflectance based measurement of optical properties. The development of a flexible, low-cost, device capable of measuring the optical properties (including absorption and reduced scattering coefficients) will enable the completion of numerous research goals common to the Department of Defense, and within the associated industrial and research and development (R&D) base, as well as medical, environmental, manufacturing, and academic facilities. In particular, the need for broad spectral response is currently limited by single detector types within systems, or is limited by single light sources. In addition, supplementary engineering is required to adapt these systems to surface contact, liquid sample, or gas samples. This topic seeks to explore the development of material approaches for such an optical characterization system. The program will establish a solution space for system development and explore a variety of approaches to meet cost, size, and capability performance parameters. The focus will be on the transition of emerging hardware and theory to develop the next generation in basic laboratory spectroscopic capability. The system will be required to rapidly acquire data from solids (including living tissues), liquids and gases, and to obtain optical properties including the determination of absorption and reduced scattering coefficients. Capturing the dynamics of optical properties (i.e. change in absorption and reduced scattering over time) on a sub-second time scale is highly desired. Absorption and scattering properties over a wavelength range of 300nm to 2,000 nm is desired. It is highly desired for the system to be capable of determining optical properties for individual layers from samples with layered structure, such as human or animal skin. The system should be compact and lab portable, should include surface contact or system-mounted measurement options. The collection of data and extraction of optical parameters and spectral analysis are required within the system software.
PHASE I: Develop concepts for hardware & instrumentation software to enable a broad spectrum optical characterization system capable of point measurement of dynamic optical properties along with fluorescence & absorption spectra. The design will include capabilities for surface-contact measurements & should consider methods for determining optical properties of individual layers in an inhomogeneous sample.
PHASE II: Based upon the results of Phase I and the Phase II development plan, the company will develop a prototype for evaluation by the Directed Energy Bioeffects Program or another program as specified by the sponsor. The prototype will be evaluated to determine its capability in meeting the performance goals defined in the Phase II development plan and the requirements outlined in this description.
PHASE III: Applications for this technology are biomedical optics, analytical chemistry, materials manufacturing characterization, environmental monitoring, education, and general R&D. The system will have applicability for exploratory research & engineering, guiding future product development.
REFERENCES:
1. Tanifuji, T. "Evaluation of time-resolved multi-distance methods to retrieve absorption and reduced scattering coefficients of adult heads in vivo: Optical parameters dependences on geometrical structures of the models used to calculate reflectance." SPIE BiOS. International Society for Optics and Photonics, 2016.
2. A. Kim, et al., "A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients," Optics Express, 18(6), 5580-5594 (2010).
3. Ivancic, Matic, et al. "Extraction of optical properties from hyperspectral images by Monte Carlo light propagation model." SPIE BiOS. International Society for Optics and Photonics, 2016.
4. K. Katrin, et al., "Ultrasensitive chemical analysis by Raman spectroscopy," Chemical Reviews, 99(10), 2957-2976 (1999).
5. Naglic, Peter, et al. "Extraction of optical properties in the sub-diffuse regime by spatially resolved reflectance spectroscopy." SPIE BiOS. International Society for Optics and Photonics, 2016.
KEYWORDS: Spectral Imaging, Optical Characterization, Broad Spectral, Absorption, Scattering