Description:
OBJECTIVE: Develop emission control materials for infrared scene projection technology to provide a high contrast, high resolution, high apparent temperature, broad-band solution for infrared hardware-in-the-loop scene projection.
DESCRIPTION: Hardware-in-the-loop (HITL) testing of infrared guided weapons requires high fidelity infrared imagery to provide target signatures in a simulated environment using continuous projection mechanisms (avoiding pulsed techniques such as pulse width modulation, etc.). Current technology limitations from resistor arrays prevent the required higher temperature targets from being achieved. Resistor arrays also suffer from poor temporal response, having a relatively long response (rise/fall) time associated with the technology, limiting the maximum frame rate. Alternative technologies continue to be investigated to overcome these problems, but introduce additional problems including narrow-band emission, angular limitations, low efficiency and bit depth/contrast issues. Recent results from the field of metamaterials, plasmonics and photonic crystals show promise for controlling and shaping thermal emission from structured materials systems. The purpose of this topic is to investigate approaches to thermal emission control for applications to meeting the growing need for a next generation scene projector, with emphasis on the mid-wave infrared spectral region. The research objective is to identify a design approach to overcome resistor array limitations and meet the Air Force need for a next generation HITL infrared scene generator. Design goals are for a 512x512 array of pixels
PHASE I: Investigate the applicability of structured materials such as plasmonics and/or metamaterials for infrared scene generator. Establish design requirements and define a design approach to building a target scene projector. Plan a Phase II development and demonstration activity.
PHASE II: Finalize the design for a prototype hardware-in-the-loop scene generator using emission control materials. Manufacture and assess a range of small form factor emitter designs to validate models and determine optimal design approach. Build and demonstrate a projector array prototype system to demonstrate the design approach and reduce risk for production of an objective scene projector system.
PHASE III: Produce a marketable scene projection system that satisfies DoD needs for a target scene generation. Work with an experience system engineering house to package and integrate the system with a drive control electronics and perform system calibration.
REFERENCES:
1. Liu, Xianliang, Talmage Tyler, Tatiana Starr, Anthony F. Starr, Nan Marie Jokerst, and Willie J. Padilla. "Taming the blackbody with infrared metamaterials as selective thermal emitters." Physical review letters 107, no. 4 (2011): 045901.
2. Guo, Yu, Cristian L. Cortes, Sean Molesky, and Zubin Jacob. "Broadband super-Planckian thermal emission from hyperbolic metamaterials." Applied Physics Letters 101, no. 13 (2012): 131106.
3. Mason, J. A., S. Smith, and D. Wasserman. "Strong absorption and selective thermal emission from a midinfrared metamaterial." Applied Physics Letters 98, no. 24 (2011): 241105.
4. Wu, Chihhui, Burton Neuner III, Jeremy John, Andrew Milder, Byron Zollars, Steve Savoy, and Gennady Shvets. "Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems." Journal of Optics 14, no. 2 (2012): 024005.
5. Lee, B. J., C. J. Fu, and Z. M. Zhang. "Coherent thermal emission from one-dimensional photonic crystals." Applied Physics Letters 87, no. 7 (2005): 071904.
KEYWORDS: Metamaterials, Infrared, Scene Projector, Target Simulator, Plasmonics