Description:
TECHNOLOGY AREA(S): Bio Medical
OBJECTIVE: Design, prototype, and validate an augmented reality training system that provides deployed medics with refresher training on common, life-critical procedures of combat medicine.
DESCRIPTION: DoD must train military medics rapidly and well, and retrain them during and after deployment to maintain critical skills. The technologies used to provide initial training, such as instrumented mannequins, are effective in schoolhouse classrooms. It is, however, cost-prohibitive and logistically infeasible to deliver such technologies, along with the required instructors and technical support staff, to deployed medics who need refresher training. Although virtual medical simulations, delivered on personal computers, are potentially deployable, such systems lack the physical realism that medics value. Next-generation prototypes of augmented reality, biofidelic simulations show promise. These technologies provide hands-on practice and represent the anatomy and effects of student actions as projections on a physical mannequin. These simulations have the potential to build expertise, which is characterized by significant time practicing the task and use of multiple cognitive representations of the problem at hand. However, these systems do not measure or assess student skill, or adapt coaching or other training content to the medic's needs. Finally, the design of augmented and virtual reality biofidelic training technologies, while innovative and intriguing is not necessarily guided by instructional design principles or does not implement those principles in ways that demonstrably improve learning outcomes. Respondents to this topic will design an augmented reality training system that is informed by instructional design principles”for example, about which physical and visual features (affordances) of the AR environment to select and present at a given time and how to guide students interaction with these affordances. That system will provide deployed medics with refresher training concerning procedures for identifying and treating common causes of preventable death, including hemorrhage from extremity wounds, tension pneumothorax (the build-up of air in the chest cavity), and airway obstruction (Gerhardt, et al., 2012). The designed system will be efficient in its demands on the time of medics, effective in maintaining the skills of medics, and extensible for training additional medical procedures and declarative knowledge. Performers will develop a prototype of this system that is sufficiently robust to support demonstration and evaluation on these characteristics.
PHASE I: The small business and academic partner will identify two training use cases and procedure in combat casualty care; define training technology requirements that are informed by empirically based principles of high fidelity, simulation-based training design; design and develop a prototype that demonstrates the feasibility of the approach for training and assessing to at least one use case and procedure, and generate a Phase II development plan that specifies the intended instructional effects, system performance goals, a stakeholder engagement plan, validation methods, key scientific and technical milestones, and risk reduction activities.
PHASE II: Based on the results of Phase I and the Phase II development plan, the performers will significantly enhance the prototype system to train, assess, and provide feedback concerning a variety of procedures; report statistics concerning system use and user performance; and provide system management functions (e.g., scenario selection and configuration, security). The performers will conduct a research study to evaluate the prototype against the training and performance goals defined in the Phase II development plan. The performers will use these evaluation results to refine the prototype.
PHASE III: If Phase II is successful, the performers will be expected to transition of the technology to a military Program of Record or to commercial use. Military customers may include training centers for military medics. The end product of this effort could be used in two programs of record Military Education and Training Command at Ft. Sam Houston and USMC Training Command. There is high potential for commercial application of an augmented reality medical training simulation. The primary market may be first responders in medicine, fire, and law enforcement. Additional markets may exist in corporations that perform high risk operations in areas with slow access to emergency responders, such as oil platform and mining operations.
REFERENCES:
1: Barsom, E. Z., Graafland, M., & Schijven, M. P. (2016). Systematic review on the effectiveness of augmented reality applications in medical training.Surgical endoscopy, 1-10.
2: Gerhardt, R. T., Mabry, R. L., DeLorenzo, R. A., Butler, F.K. (2012). Fundamentals of combat casualty care. In E. Savitsky & B. Eastridge, (eds.) Combat Casualty Care: Lessons Learned from OEF and OIF. pp85-120. Office of The Surgeon General, Falls Church, VA; AMEDD Center & School, Fort Sam Houston, TX; Borden Institute, Fort Detrick, MD. Found on the world wide web on 5 July 2016 at http://www.cs.amedd.army.mil/borden/book/ccc/uclachp3.pdf
3: Issenberg, B.S., McGaghie, W. C., Petrusa, E. R., Lee Gordon, D., & Scalese, R. J. (2005). Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Medical Teacher, 27(1), 10-28.
4: Magee, J. H. (2010, April). A new era in medical training through simulation-based training systems. Paper presented at the RTO Human Factors and Medicine Panel Symposium, Essen, Germany. Retrieved from http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA592803
5: Zhu, E., Hadadgar, A., Masiello, I., & Zary, N. (2014). Augmented reality in healthcare education: an integrative review. PeerJ, 2, e469.
KEYWORDS: Augmented Reality, Intelligent Tutoring, Instructional Strategy, Performance Measurement, Coaching, Medical