Description:
TECHNOLOGY AREA(S): Bio Medical
OBJECTIVE: Develop and demonstrate a non-invasive technology to wirelessly control a microprocessor prosthetic foot or hand, or upper or lower limb microprocessor controlled orthosis. The technology must be able to be used within a prosthetic socket and extend beyond the socket for patients who do not use a socket (e.g. osseointegration) and to harness proximal information (e.g. knee, thigh, and hip information for patients with transtibial amputation).
DESCRIPTION: Due to the most recent conflicts, 52% of all casualties presented with limb injury (1) including more than 1600 amputations. It is of utmost importance that these individuals continue to receive advanced rehabilitative care, including orthotic and prosthetic devices, that allows them to achieve their functional goals, including the possibility of returning to duty. Advanced prosthetic and orthotic devices have become increasingly prevalent in the marketplace in the past 5 years. Powered prosthetic hands with multiple degrees of freedom; powered prosthetic knees and feet that return anatomical range of motion and provide power generation; and powered upper limb orthoses that assist with activities of daily living, are just a few examples. All of these devices are controlled with microprocessors through information gained from the environment (force sensors, accelerometers, etc.) and information generated by the users, typically muscle activity. That information is often not robust enough to control these devices to provide seamless user-intended control, allowing users to control their devices without thinking (2). Another advancement that is becoming reality in the United States is osseointegration. In this procedure, the residual bone is implanted with a surgical attachment which eventually becomes integrated into the bone. A prosthetic device can then be attached to an abutment of the implant from the skin, eliminating the need for a socket. A limitation, however, especially for patients with transhumeral amputation is that they can no longer use wired, socket based, myoelectric prostheses. A wireless, non-invasive system is desired that would be able to harness any available physiological information (at the level of injury or proximally) to promote user intent control a microprocessor prosthetic foot or hand, or orthosis.
PHASE I: Conceptualize and design an innovative solution for a wireless system to provide human physiological signals to commercialized microprocessor controlled prosthetics and orthotics. Designs should be able to interface with current prosthetic components (i.e. easily implemented into the users current device(s)). The specifications of the device should provide high-fidelity information of the physiological signals that are being acquired. Justification must be provided for sampling rates of other physiological signals. Specifications must also be provided on how physiological data will be handled between the signal acquisition and control of prosthetic components. The required Phase I deliverables will include: 1) a research design for engineering the device, 2) A preliminary prototype with limited testing to demonstrate proof-of-concept evidence that demonstrates the ability to harvest physiological information from users in a non-invasive way, and 3) a plan to submit a package to the US Food and Drug Administration (FDA). Other supportive data may also be provided during this 6-month Phase I effort
PHASE II: The investigator shall design, develop, test, finalize, and validate the practical implementation of the prototype system that implements the Phase I methodology for a wireless system to provide human physiological signals to commercialized microprocessor controlled prosthetics and orthotics, over this 2-year effort. The prototype should demonstrate improved functional ability and patient satisfaction beyond current prescribed devices through testing with patients with limb injuries. Final specifications of the device that contribute to ease of use (e.g. response time, donning/doffing, etc.) should be incorporated as patient reported outcomes during testing. The investigator shall also describe in detail the transition plan for the Phase III effort. The testing and practical implementation of the prototype system should be relevant to Service Members who have experienced limb trauma requiring the use of a prosthesis or orthosis. These patients are often young and have previously demonstrated Return to Duty, occupation, and other life activities requiring advanced technologies. The demonstration of prototype systems should be rigorous enough to demonstrate the abilities of the system to function in different environments and perform many different daily activities beyond the current standard of care. Investigators should have a package assembled to submit for clearance to the FDA by the end of Phase II.
PHASE III: Plans on the commercialization/technology transition and regulatory pathway should be executed here and lead to FDA clearance/approval. The small business should also consider a strategy to secure additional funding from non-SBIR government sources and /or the private sector to support these efforts. The vendor shall work with industry partners to develop a final commercial product that will allow user intent control advanced prosthetic and orthotic devices. Investigators are encouraged to work with military clinics (for example, a military treatment facility that treats patients with amputation. The three main centers are Walter Reed National Military Medical Center, San Antonio Military Medical Center, and the Naval Medical Center “ San Diego)
REFERENCES:
1: Belmont Jr, P. J., McCriskin, B. J., Sieg, R. N., Burks, R., & Schoenfeld, A. J. (2012). Combat wounds in Iraq and Afghanistan from 2005 to 2009. Journal of trauma and acute care surgery, 73(1), 3-12.
2: Tucker, M.R., Olivier, J., Pagel, A., Bleuler, H., Bouri, M., Lambercy, O., del R Millán, J., Riener, R., Vallery, H. and Gassert, R. (2015). Control strategies for active lower extremity prosthetics and orthotics: a review. Journal of neuroengineering and rehabilitation, 12(1), 1.
KEYWORDS: Control, Prosthesis, Orthosis, Osseointegration