You are here

Innovative Collaboration for Unmanned Aerial and Dissimilar Systems


TECHNOLOGY AREA(S): Air Platform, Ground Sea 

OBJECTIVE: Goal is to develop innovative software and hardware solutions enabling collaborative efforts between unmanned aerial and dissimilar systems, such as ground and sea vehicles, that results in synergistic behavior and allow unmanned aerial platforms to be used to accomplish more complex missions through real-time perception and sensor data sharing. Achieving this goal will leverage recent advances in miniaturization and sensing, autonomous landing and collision avoidance, semantic mapping, and could enable ways for teams of different types of unmanned systems to operate. 

DESCRIPTION: Unmanned aerial systems are being used in increasing numbers to reduce risk and cost, and to reduce the demand for manned platforms particularly in hostile environments. Much of this increase is in the use of small, lower cost, tactical unmanned platforms to provide rapid, actionable information directly to the operator. The U.S. Navy, for example, is using unmanned underwater vehicles (UUVs) for surveillance and counter-mine operations and Navy experts also are developing unmanned surface vessels (USVs) for mine warfare and harbor security. Unmanned air vehicles (UAVs) have been used for a number of years to provide situational awareness and perimeter surveillance capabilities for both Naval Vessels and forward deployed ground troops. The current capability is generally a result of the specific platforms level of autonomy and the suite of sensors being operated, but there is a desire for future systems to share capabilities between platforms, thereby increasing the overall capability of the system. Examples of particular interest are hardware and software to enable Small Unmanned Air Systems (SUAS) working with unmanned ground vehicles to autonomously map and classify landing zones to enable other autonomous system teammates to land and takeoff safely or for instance map a path for an unmanned ground vehicle to a rendezvous point. Working together these different platforms could provide terrain mapping and classification to provide up-to-date, highly detailed 3-D annotated mapping for situational awareness and Landing Zone Evaluation. Further, small Scale UAVs in concert with Unmanned Ground Vehicles would be capable of near real time sharing of environmental information such as man-made structures and vegetation. This micro scale mapping capability could perform tactical reconnaissance of intended Landing Zones (and other areas) to further inform mission planning and execution. A primary capability that has yet to be developed is the suite of autonomous behaviors necessary to determine when it is appropriate to land, identify a suitable landing zone (LZ), guide the SUAS to the LZ, or for a SUAS to guide an unmanned ground vehicle to a safe rendezvous point with a vertical takeoff SUAS for use in mission such as cargo resupply. In this scenario, the SUAS could work cooperatively with an unmanned ground vehicle to identify the LZ and guide its teammate to it from a suitable vantage point. The unmanned ground vehicle could also pass mapping data for terrain not visible to the aerial vehicle. This would give the landing vehicle the benefit of multiple perspectives relative to the LZ. Another example of interest would be the exchange of information between a SUAS and an unmanned surface vehicle (USV) to rendezvous and the SUAS land on the USV. This could be used in applications such as search and rescue or area surveillance. The Navy is looking to develop collaborative activities between unmanned systems that will enhance the primary platforms capability and allow the execution of more complex, higher importance missions. Collaboration can be between similar or dissimilar (air, surface or underwater) unmanned platforms, but should share critical information that enhances the value and capability of the system, or allows the execution of unique missions that might otherwise be difficult or impossible to carry out. This could include passing semantic terrain mapping and classification, precise relative navigation information between the vehicles, and other sensor information. Previous efforts on collaboration [1] often utilize expensive hardware and/or complex software [2], but a further objective of this work is to leverage lower cost commercially available technology developed for mass produced, portable, hand held devices such as cell phones and tablets. A goal would be to utilize commercially available technology and not develop unique hardware. 

PHASE I: Identify specific collaborative platforms and develop a concept for the sharing of critical information that would enable collaborative efforts between the platforms, synergistic behaviors that are enabled, and describe the more complex missions possible through real-time perception and sensor data sharing. Achieving this goal will leverage recent advances in miniaturization and sensing, autonomous landing and collision avoidance, semantic mapping, and could enable ways for teams of different types of unmanned systems to operate. Work directly with a university or research institute to develop and tailor technologies to meet a specific type of application/mission. Demonstrate how the platforms will be linked and what information might be shared to augment the mission and provide increased capability. Where appropriate, provide bench scale demonstrations of key technologies to reduce the risk associated with a practical demonstration. 

PHASE II: Based on Phase I effort the small business will develop and demonstrate the technology that enables collaborative behavior of the autonomous platforms and provide quantitative information to show enhanced capability from the collaborative system. Develop, build and implement specific technology for a proposed range of applications/missions and work with selected OEMs to develop approximate cost analyses for proposed production volumes. 

PHASE III: Phase III efforts will focus on developing a transition path for the hardware and software solutions. At this stage, the technology will be fully integrated and capable of end to end mission completion. The small business will provide support in transitioning the system for Marine Corps and US NAVY use in small UAS programs. Application of robotics is a rapidly expanding field which can leverage greatly the ability of different domain type systems to operate together. This is part of the "internet of things" revolution that is occurring. Private Sector Commercial Potential: If Phase III is successful, UxS collaboration as an integrated capability would be useful to all civilian UAS/UGV/USV. It has specific application in construction industry, and all industries that require highly accurate coordination between different types of vehicles fusing data from different perspectives. Similar to their military applications, autonomous systems will soon be relied on more extensively in the private sector as well. This STTR topic seeks to expand technical capabilities of autonomous systems. Autonomous Collaboration will benefit industries such as agriculture (land mapping, terrain classification), conservation, and search and rescue applications. 


1. Fink W, Dohm J.M, Tarbell M.A, Hare T.M, Baker V.R Next-Generation Robotic Planetary Reconnaissance Missions: A Paradigm Shift; Planetary and Space Science, 53, (2005) 1419-1426

2. Drewes P, Franke J. Collaborative Unmanned Operations for Maritime Security. -


KEYWORDS: Autonomy, Unmanned, Air Vehicles, Sensor Sharing, Ground Vehicles, UAV 

US Flag An Official Website of the United States Government